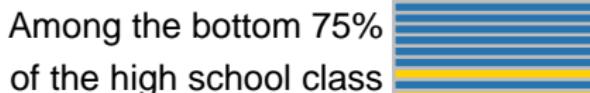
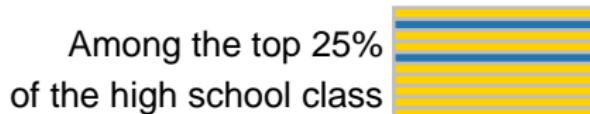
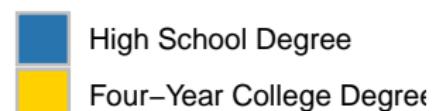


Conditional Randomization



Ian Lundberg

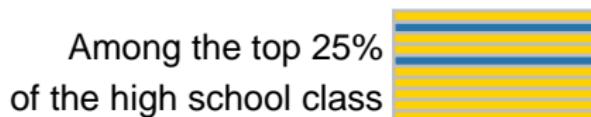
Learning goals for today


At the end of class, you will be able to:

1. Define a conditionally randomized experiment
2. Define conditional exchangeability

A hypothetical experiment: Conditional randomization

Randomly Assigned to



High School Degree	(Blue)
Four-Year College Degree	(Yellow)

Outcome: Employed at age 40

Does exchangeability hold? How would you analyze?

A hypothetical experiment:
Conditional randomization

Among the bottom 75%
of the high school class

Randomly Assigned to

	High School Degree
	Four-Year College Degree

Outcome: Employed at age 40

Conditional randomization: Exchangeability does not hold

A hypothetical experiment:
Conditional randomization

Among the top 25%
of the high school class

Randomly Assigned to

- High School Degree
- Four-Year College Degree

Among the bottom 75%
of the high school class

Conditional randomization: Exchangeability does not hold

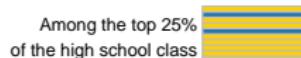
Treated units are more likely to have done well in high school

A hypothetical experiment:
Conditional randomization

Among the top 25%
of the high school class

Among the bottom 75%
of the high school class

Randomly Assigned to


- High School Degree
- Four-Year College Degree

Conditional randomization: Exchangeability does not hold

Treated units are more likely to have done well in high school

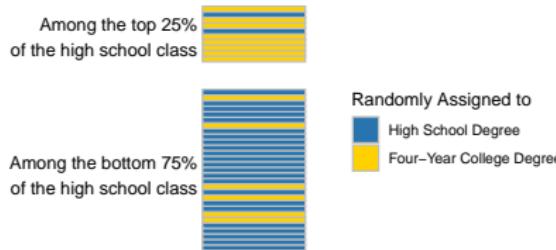
Those who do well in high school are more likely to be employed at age 40 even without college

A hypothetical experiment:
Conditional randomization

Randomly Assigned to

- High School Degree
- Four-Year College Degree

Among the bottom 75%
of the high school class


Conditional randomization: Exchangeability does not hold

Treated units are more likely to have done well in high school

Those who do well in high school are more likely to be employed at age 40 even without college

$$\{Y^1, Y^0\} \not\perp\!\!\!\perp A$$

A hypothetical experiment:
Conditional randomization

Conditional randomization: Analyze within subgroups

A hypothetical experiment:
Conditional randomization

Among the top 25%
of the high school class

Among the bottom 75%
of the high school class

Randomly Assigned to

- High School Degree
- Four-Year College Degree

Conditional randomization: Analyze within subgroups

Among top 25%, simple random experiment.

Among bottom 75%, simple random experiment.

A hypothetical experiment:
Conditional randomization

Among the top 25%
of the high school class

Randomly Assigned to

High School Degree
Four-Year College Degree

Among the bottom 75%
of the high school class

Conditional randomization: Analyze within subgroups

Among top 25%, simple random experiment.

Among bottom 75%, simple random experiment.

Conditional exchangeability:

$\{Y^1, Y^0\}$ $\perp\!\!\!\perp$ A $|$ X
Potential Outcomes Are Independent of Treatment Within Subgroups of X

A hypothetical experiment:
Conditional randomization

Among the top 25%
of the high school class

Randomly Assigned to
High School Degree
Four-Year College Degree

Among the bottom 75%
of the high school class

Conditional average treatment effects

We get two estimates. Average effect of college on employment

- ▶ among those in the top 25% of their high school class
- ▶ among those in the bottom 75% of their high school class

These are **conditional average treatment effects**

$$\underbrace{\tau(x)}_{\text{Conditional Average Treatment Effect (CATE)}} = \underbrace{E}_{\text{Expected value of}} \left(\underbrace{Y^1 - Y^0}_{\text{treatment effect}} \mid \underbrace{\vec{X} = \vec{x}}_{\text{the predictors } \vec{X} \text{ take the value } \vec{x}} \right)$$

Learning goals for today

At the end of class, you will be able to:

1. Define a conditionally randomized experiment
2. Define conditional exchangeability