

Directed Acyclic Graphs

Ian Lundberg¹

¹Assistant Professor, Sociology, UCLA, ianlundberg@ucla.edu

Why DAGs are worth knowing

Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y
2. Perhaps A and Y are related for other reasons

Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y
2. Perhaps A and Y are related for other reasons

DAGs formalize when (1) and not (2).

Learning goals for today

- ▶ fork structures
- ▶ collider structures
- ▶ causal reasoning and statistical independence

A hypothetical experiment in two population subgroups

A hypothetical experiment in two population subgroups

People who like exercise

People who don't like exercise

A hypothetical experiment in two population subgroups

People who like exercise

Treatment

75% assigned an exercise
coach for 1 month

People who don't like exercise

Treatment

25% assigned an exercise
coach for 1 month

A hypothetical experiment in two population subgroups

People who like exercise

Treatment

75% assigned an exercise
coach for 1 month

People who don't like exercise

Treatment

25% assigned an exercise
coach for 1 month

Outcome: How many pull-ups can they do?

A hypothetical experiment in two population subgroups

People who like exercise

Treatment

75% assigned an exercise coach for 1 month

People who don't like exercise

Treatment

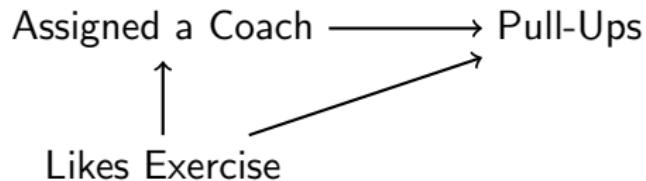
25% assigned an exercise coach for 1 month

Outcome: How many pull-ups can they do?

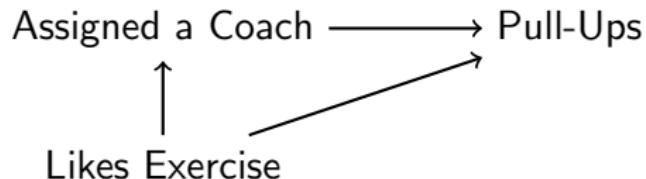
Question for you:

Give 2 reasons why those assigned a coach can do more pull-ups

A hypothetical experiment in two population subgroups

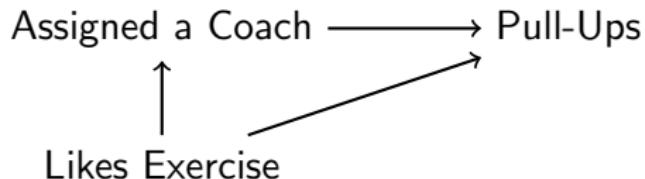


A hypothetical experiment in two population subgroups



Nodes are random variables. **Edges** (\rightarrow) are causal relations

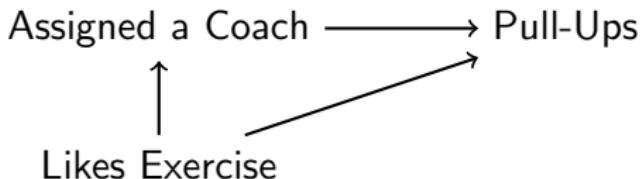
A hypothetical experiment in two population subgroups



Nodes are random variables. **Edges** (\rightarrow) are causal relations

The graph links causal assumptions to statistical dependence

A hypothetical experiment in two population subgroups

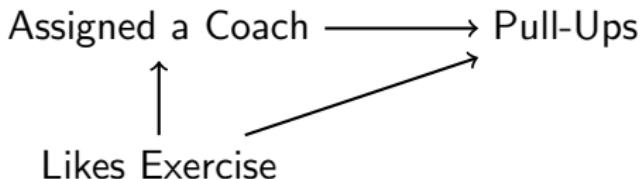


Nodes are random variables. **Edges** (\rightarrow) are causal relations

The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

A hypothetical experiment in two population subgroups



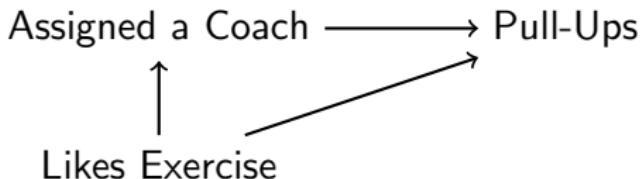
Nodes are random variables. **Edges** (\rightarrow) are causal relations

The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

- ▶ (Assigned a Coach) \rightarrow (Pull-Ups)
- ▶ a causal path: all arrows go one direction

A hypothetical experiment in two population subgroups



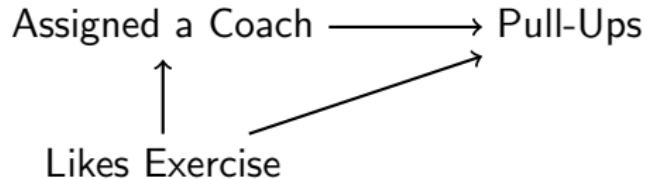
Nodes are random variables. **Edges** (\rightarrow) are causal relations

The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically dependent because of two open paths:

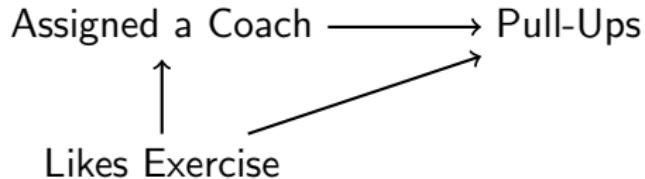
- ▶ (Assigned a Coach) \rightarrow (Pull-Ups)
 - ▶ a causal path: all arrows go one direction
- ▶ (Assigned a Coach) \leftarrow (Likes Exercise) \rightarrow (Pull-Ups)
 - ▶ a backdoor path containing a fork

A hypothetical experiment in two population subgroups



How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

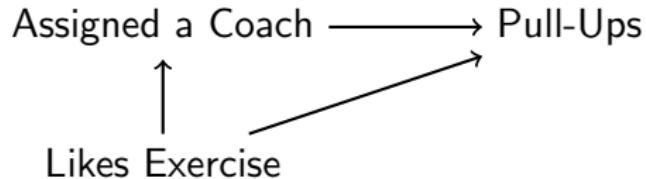
A hypothetical experiment in two population subgroups



How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

- ▶ split into two subgroups: likes exercise and don't

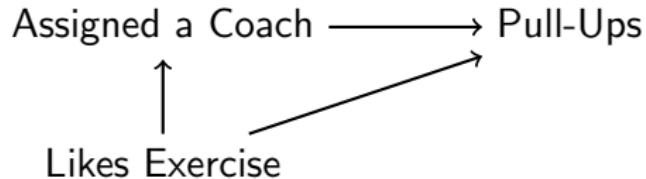
A hypothetical experiment in two population subgroups



How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

- ▶ split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup

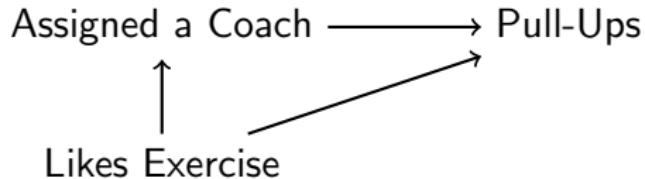
A hypothetical experiment in two population subgroups



How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

- ▶ split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup
- ▶ estimate within each subgroup

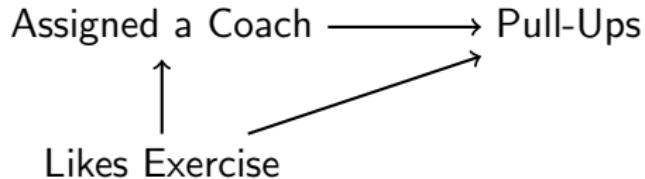
A hypothetical experiment in two population subgroups



How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

- ▶ split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup
- ▶ estimate within each subgroup
- ▶ pool the two estimates for an average causal effect estimate

A hypothetical experiment in two population subgroups



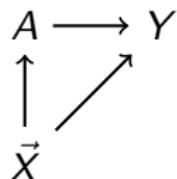
How to study the causal effect $(\text{Assigned a Coach}) \rightarrow (\text{Pull-Ups})$?

- ▶ split into two subgroups: likes exercise and don't
- ▶ we have a simple randomized experiment within each subgroup
- ▶ estimate within each subgroup
- ▶ pool the two estimates for an average causal effect estimate

Terminology: We condition on [Likes Exercise]

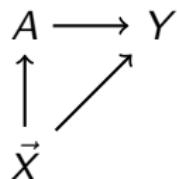
Recap: Why DAGs are worth knowing

1. DAGs tell us when conditioning on \vec{X} identifies a causal effect



Recap: Why DAGs are worth knowing

1. DAGs tell us when conditioning on \vec{X} identifies a causal effect



DAGs also tell us when conditioning can create problems.

Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

- ▶ I set my sprinklers to turn on at random times

Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

- ▶ I set my sprinklers to turn on at random times
- ▶ It rains at random times

Colliders: The sprinkler example

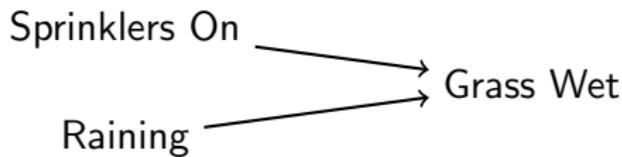
Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

- ▶ I set my sprinklers to turn on at random times
- ▶ It rains at random times
- ▶ (Sprinklers) or (Rain) can make the grass wet

Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

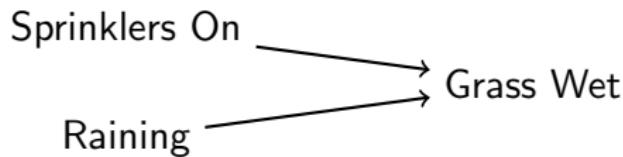
- ▶ I set my sprinklers to turn on at random times
- ▶ It rains at random times
- ▶ (Sprinklers) or (Rain) can make the grass wet



Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

- ▶ I set my sprinklers to turn on at random times
- ▶ It rains at random times
- ▶ (Sprinklers) or (Rain) can make the grass wet

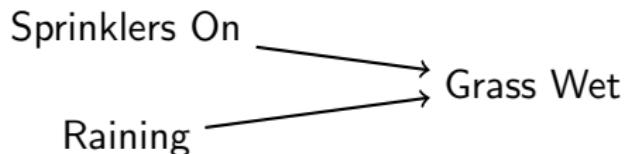


Questions:

- ▶ If (Sprinklers On = FALSE), does that help me predict (Raining)?
- ▶ If (Sprinklers On = FALSE) and (Grass Wet = TRUE), does that help me predict (Raining)?

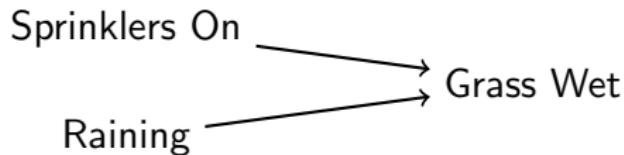
Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.



Colliders: The sprinkler example

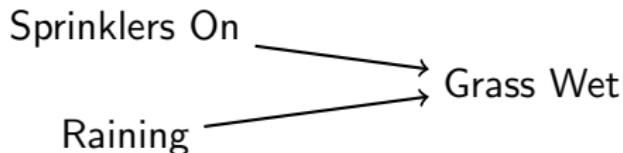
Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.



- (Grass Wet) is a **collider** (arrows collide $\rightarrow\leftarrow$)

Colliders: The sprinkler example

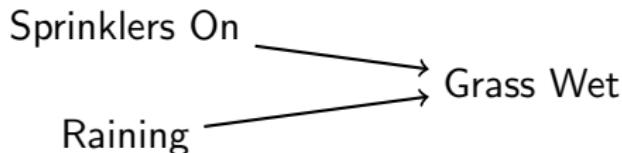
Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.



- ▶ (Grass Wet) is a **collider** (arrows collide $\rightarrow\leftarrow$)
- ▶ A collider blocks a path
 - ▶ marginal independence of (Sprinklers On) and (Raining)

Colliders: The sprinkler example

Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.



- ▶ (Grass Wet) is a **collider** (arrows collide $\rightarrow\leftarrow$)
- ▶ A collider blocks a path
 - ▶ marginal independence of (Sprinklers On) and (Raining)
- ▶ Conditioning on a collider opens the path
 - ▶ conditional dependence of (Sprinklers On) and (Raining) when restricting to times when (Grass Wet = True)

Using DAGs to identify causal effects: Game plan

Using DAGs to identify causal effects: Game plan

1. Draw a DAG

Using DAGs to identify causal effects: Game plan

1. Draw a DAG
 - ▶ Create nodes for treatment and outcome

Using DAGs to identify causal effects: Game plan

1. Draw a DAG

- ▶ Create nodes for treatment and outcome
- ▶ Add other nodes

Using DAGs to identify causal effects: Game plan

1. Draw a DAG

- ▶ Create nodes for treatment and outcome
- ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph

Using DAGs to identify causal effects: Game plan

1. Draw a DAG

- ▶ Create nodes for treatment and outcome
- ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges

Using DAGs to identify causal effects: Game plan

1. Draw a DAG
 - ▶ Create nodes for treatment and outcome
 - ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges
2. List all paths between treatment and outcome

Using DAGs to identify causal effects: Game plan

1. Draw a DAG
 - ▶ Create nodes for treatment and outcome
 - ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges
2. List all paths between treatment and outcome
3. Choose a sufficient adjustment set:
variables that jointly block all non-causal paths

Using DAGs to identify causal effects: Game plan

1. Draw a DAG
 - ▶ Create nodes for treatment and outcome
 - ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges
2. List all paths between treatment and outcome
3. Choose a sufficient adjustment set:
variables that jointly block all non-causal paths
 - ▶ a path is blocked if it contains an adjusted non-collider

Using DAGs to identify causal effects: Game plan

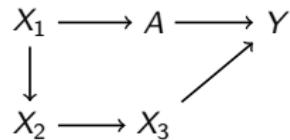
1. Draw a DAG
 - ▶ Create nodes for treatment and outcome
 - ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges
2. List all paths between treatment and outcome
3. Choose a sufficient adjustment set:
variables that jointly block all non-causal paths
 - ▶ a path is blocked if it contains an adjusted non-collider
 - ▶ a path is blocked if it contains an unadjusted collider
(and no descendant of that collider is adjusted)

Using DAGs to identify causal effects: Game plan

1. Draw a DAG
 - ▶ Create nodes for treatment and outcome
 - ▶ Add other nodes
 - ▶ anything causally related to any two nodes in the graph
 - ▶ also add the causal edges
2. List all paths between treatment and outcome
3. Choose a sufficient adjustment set:
variables that jointly block all non-causal paths
 - ▶ a path is blocked if it contains an adjusted non-collider
 - ▶ a path is blocked if it contains an unadjusted collider
(and no descendant of that collider is adjusted)
 - ▶ otherwise unblocked

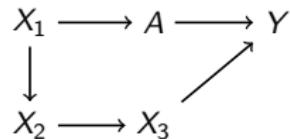
Exercise 1

Find adjustment sets that identify the effect of A on Y



Exercise 1

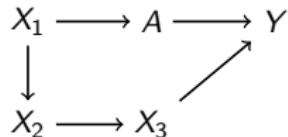
Find adjustment sets that identify the effect of A on Y



We can block the backdoor path in several ways:

Exercise 1

Find adjustment sets that identify the effect of A on Y

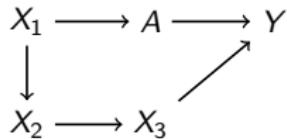


We can block the backdoor path in several ways:

- ▶ Condition on X_1 : $A \leftarrow \boxed{X_1} \rightarrow X_2 \rightarrow X_3 \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

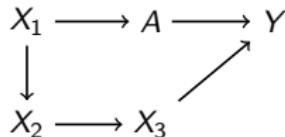


We can block the backdoor path in several ways:

- ▶ Condition on X_1 : $A \leftarrow \boxed{X_1} \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_2 : $A \leftarrow X_1 \rightarrow \boxed{X_2} \rightarrow X_3 \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

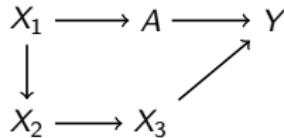


We can block the backdoor path in several ways:

- ▶ Condition on X_1 : $A \leftarrow \boxed{X_1} \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_2 : $A \leftarrow X_1 \rightarrow \boxed{X_2} \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_3 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow \boxed{X_3} \rightarrow Y$

Exercise 1

Find adjustment sets that identify the effect of A on Y

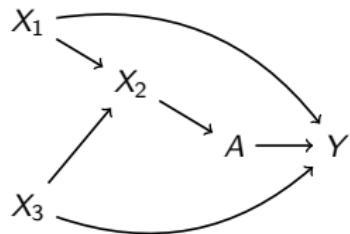


We can block the backdoor path in several ways:

- ▶ Condition on X_1 : $A \leftarrow \boxed{X_1} \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_2 : $A \leftarrow X_1 \rightarrow \boxed{X_2} \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_3 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow \boxed{X_3} \rightarrow Y$
- ▶ Any combination of the above

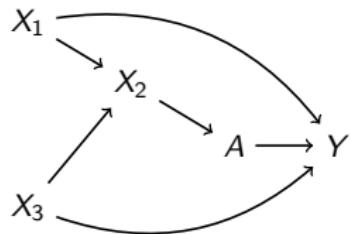
Exercise 2

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$



Exercise 2

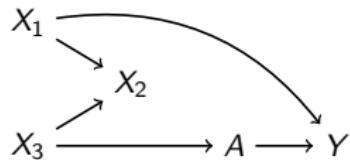
Find 3 sufficient adjustment sets to identify $A \rightarrow Y$



Answer: $\{X_2\}$, $\{X_1, X_3\}$, $\{X_1, X_2, X_3\}$

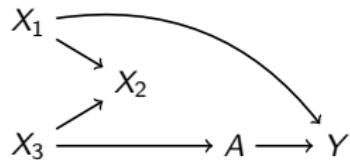
Exercise 3

What is the smallest adjustment set that identifies $A \rightarrow Y$?



Exercise 3

What is the smallest adjustment set that identifies $A \rightarrow Y$?



Answer: The empty set! Don't condition on anything.
The collider X_2 already blocks the path.

DAG in a realistic setting

To what extent does completing a 4-year college degree affect a person's future earnings?

Effect of a 4-year degree on future earnings

1) Draw a DAG

Effect of a 4-year degree on future earnings

1) Draw a DAG

degree earnings

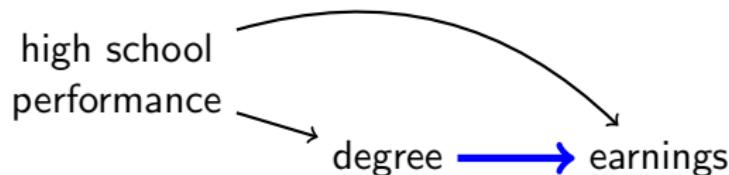
Effect of a 4-year degree on future earnings

1) Draw a DAG

degree earnings

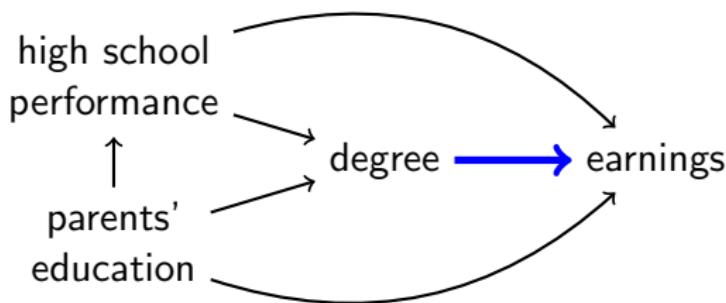
Effect of a 4-year degree on future earnings

1) Draw a DAG



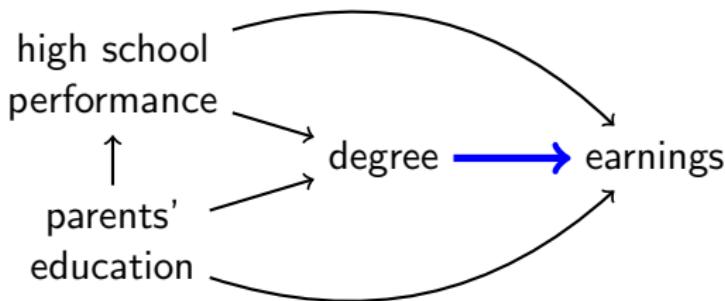
Effect of a 4-year degree on future earnings

1) Draw a DAG



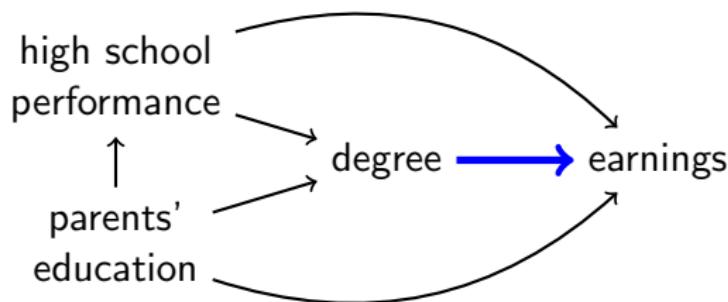
Effect of a 4-year degree on future earnings

2) List all paths between the treatment and outcome



Effect of a 4-year degree on future earnings

2) List all paths between the treatment and outcome

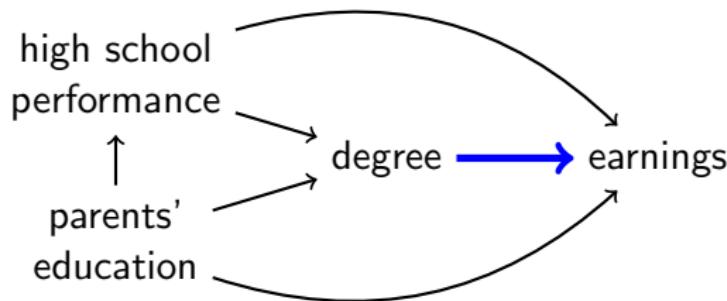


Causal paths

$(\text{degree}) \rightarrow (\text{earnings})$

Effect of a 4-year degree on future earnings

2) List all paths between the treatment and outcome



Causal paths

$(\text{degree}) \rightarrow (\text{earnings})$

Backdoor paths

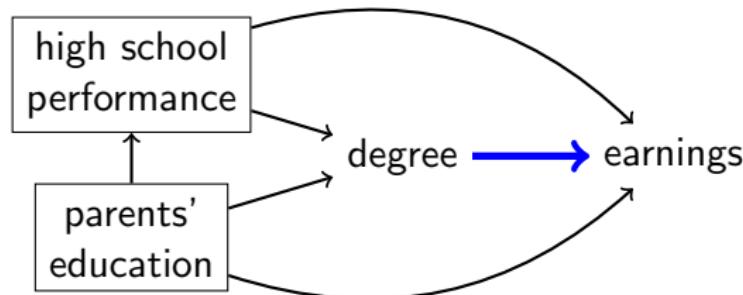
$(\text{degree}) \leftarrow (\text{high school performance}) \rightarrow (\text{earnings})$

$(\text{degree}) \leftarrow (\text{parents' education}) \rightarrow (\text{earnings})$

$(\text{degree}) \leftarrow (\text{high school performance}) \leftarrow (\text{parents' education}) \rightarrow (\text{earnings})$

Effect of a 4-year degree on future earnings

3) Choose a sufficient adjustment set {high school performance, parents' education}



Causal paths

$(\text{degree}) \rightarrow (\text{earnings})$

Backdoor paths

$(\text{degree}) \leftarrow \text{high school performance} \rightarrow (\text{earnings})$

$(\text{degree}) \leftarrow \text{parents' education} \rightarrow (\text{earnings})$

$(\text{degree}) \leftarrow \text{high school performance} \leftarrow \text{parents' education} \rightarrow (\text{earnings})$

DAGs: A promising path

- ▶ DAGs connect causal theories to statistical dependence
- ▶ Statistical dependence arises through causal paths
- ▶ Paths may contain two key structures
 - ▶ forks: $A \leftarrow B \rightarrow C$
(A and C dependent if B unadjusted)
 - ▶ colliders: $A \rightarrow B \leftarrow C$
(A and C dependent if B adjusted)
- ▶ Causal identification goal:
choose a sufficient adjustment set so only the causal path of interest remains open
- ▶ Experimental analog:
Among units who are identical on the sufficient adjustment set, we have a simple randomized experiment

DAGs: Words of warning

DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- ▶ Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- ▶ Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

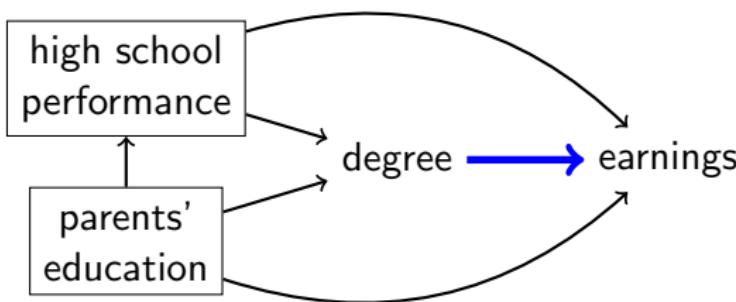
It is important to reason about when the DAG may not hold

DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

It is important to reason about when the DAG may not hold

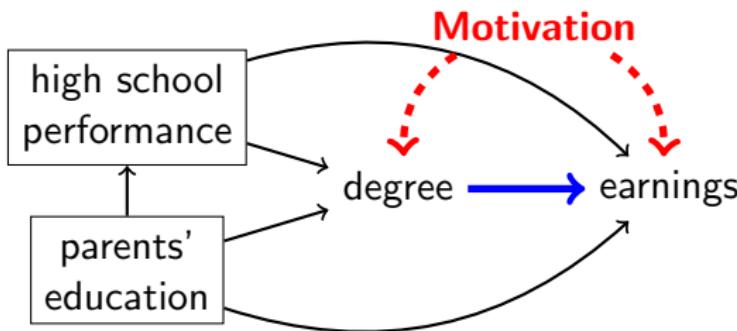


DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

It is important to reason about when the DAG may not hold

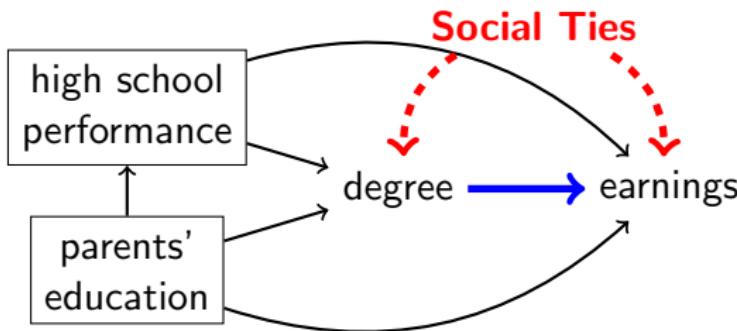


DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

It is important to reason about when the DAG may not hold

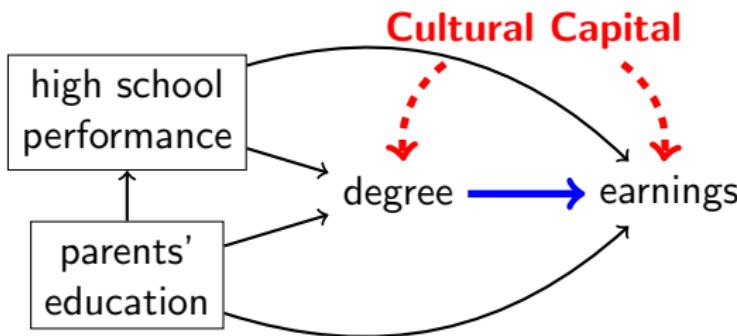


DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

- Your claim:
If this is the DAG,
then adjusting for \vec{X} identifies the effect

It is important to reason about when the DAG may not hold



Resources to learn more

- ▶ Hernán, M.A., & J.M. Robins. 2020.
Causal Inference: What If?
Boca Raton: Chapman & Hall / CRC.
- ▶ Pearl, J., & Mackenzie, D. (2018).
The Book of Why: The New Science of Cause and Effect.
Basic Books.
- ▶ Pearl, J., Glymour, M., & Jewell, N. P. (2016).
Causal Inference in Statistics: A Primer.
John Wiley & Sons.
- ▶ Pearl, J. (2000).
Causality.
Cambridge University Press.