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Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y

2. Perhaps A and Y are related for other reasons

DAGs formalize when (1) and not (2).



Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y

2. Perhaps A and Y are related for other reasons

DAGs formalize when (1) and not (2).



Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y

2. Perhaps A and Y are related for other reasons

DAGs formalize when (1) and not (2).



Why DAGs are worth knowing

You observe that treatment A and outcome Y are associated.

Why is that the case?

1. Perhaps A causes Y

2. Perhaps A and Y are related for other reasons

DAGs formalize when (1) and not (2).



Learning goals for today

▶ fork structures

▶ collider structures

▶ causal reasoning and statistical independence



A hypothetical experiment in two population subgroups

People who like exercise People who don’t like exercise

Treatment
75% assigned an exercise
coach for 1 month

Treatment
25% assigned an exercise
coach for 1 month

Outcome: How many pull-ups can they do?

Question for you:
Give 2 reasons why those assigned a coach can do more pull-ups
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A hypothetical experiment in two population subgroups

Assigned a Coach Pull-Ups

Likes Exercise

Nodes are random variables. Edges (→) are causal relations

The graph links causal assumptions to statistical dependence

In this graph, (Assigned a Coach) and (Pull-Ups) are statistically
dependent because of two open paths:
▶ (Assigned a Coach) → (Pull-Ups)

▶ a causal path: all arrows go one direction

▶ (Assigned a Coach) ← (Likes Exercise) → (Pull-Ups)
▶ a backdoor path containing a fork
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A hypothetical experiment in two population subgroups

Assigned a Coach Pull-Ups

Likes Exercise

How to study the causal effect (Assigned a Coach) → (Pull-Ups)?

▶ split into two subgroups: likes exercise and don’t

▶ we have a simple randomized experiment within each subgroup

▶ estimate within each subgroup

▶ pool the two estimates for an average causal effect estimate

Terminology: We condition on [Likes Exercise]
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Colliders: The sprinkler example
Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference.

▶ I set my sprinklers to turn on at random times

▶ It rains at random times

▶ (Sprinklers) or (Rain) can make the grass wet

Sprinklers On

Raining
Grass Wet

Questions:

▶ If (Sprinklers On = FALSE), does that help me predict
(Raining)?

▶ If (Sprinklers On = FALSE) and (Grass Wet = TRUE), does
that help me predict (Raining)?
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Using DAGs to identify causal effects: Game plan

1. Draw a DAG

▶ Create nodes for treatment and outcome
▶ Add other nodes

▶ anything causally related to any two nodes in the graph
▶ also add the causal edges

2. List all paths between treatment and outcome

3. Choose a sufficient adjustment set:
variables that jointly block all non-causal paths

▶ a path is blocked if it contains an adjusted non-collider
▶ a path is blocked if it contains an unadjusted collider

(and no descendant of that collider is adjusted)
▶ otherwise unblocked
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Exercise 1

Find adjustment sets that identify the e↵ect of A on Y

A YX1

X2 X3

We can block the backdoor path in several ways:

I Condition on X1: A� X1 � X2 � X3 � Y

I Condition on X2: A� X1 � X2 � X3 � Y

I Condition on X3: A� X1 � X2 � X3 � Y

I Any combination of the above
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Exercise 2

Find 3 su�cient adjustment sets to identify A� Y
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X2

A Y

X3

Answer: {X2}, {X1, X3}, {X1, X2, X3}
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Exercise 3

What is the smallest adjustment set that identifies A� Y ?

X1

X2

A YX3

Answer: The empty set! Don’t condition on anything.
The collider X2 already blocks the path.
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DAG in a realistic setting

To what extent does completing a 4-year college
degree affect a person’s future earnings?
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Effect of a 4-year degree on future earnings

2) List all paths between the treatment and outcome

degree earnings

high school
performance

parents’
education

Causal paths

(degree) → (earnings)

Backdoor paths
(degree) ← (high school performance) → (earnings)
(degree) ← (parents’ education) → (earnings)

(degree) ← (high school performance) ← (parents’ education) → (earnings)
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Effect of a 4-year degree on future earnings

3) Choose a sufficient adjustment set
{high school performance, parents’ education}

degree earnings

high school
performance

parents’
education

Causal paths

(degree) → (earnings)

Backdoor paths

(degree) ← high school performance → (earnings)

(degree) ← parents’ education → (earnings)

(degree) ← high school performance ← parents’ education → (earnings)



DAGs: A promising path

▶ DAGs connect causal theories to statistical dependence

▶ Statistical dependence arises through causal paths
▶ Paths may contain two key structures

▶ forks: A← B → C
(A and C dependent if B unadjusted)

▶ colliders: A→ B ← C
(A and C dependent if B adjusted)

▶ Causal identification goal:
choose a sufficient adjustment set so only the causal path of
interest remains open

▶ Experimental analog:
Among units who are identical on the sufficient adjustment
set, we have a simple randomized experiment



DAGs: Words of warning

Inference is only valid to the degree that the DAG holds

▶ Your claim:
If this is the DAG,
then adjusting for X⃗ identifies the effect

It is important to reason about when the DAG may not hold
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