

Experiments (Equal Probability Randomization)

Ian Lundberg

Learning goals for today

At the end of this session, you will be able to:

1. Explain exchangeability in randomized experiments
2. Connect causal inference to sampling for population inference

Exchangeable sampling from a population

Exchangeable sampling from a population

Population Outcomes

Y_{Maria}
Y_{William}
Y_{Rich}
Y_{Sarah}
Y_{Alondra}
$Y_{\text{Jesús}}$

Exchangeable sampling from a population

Population Outcomes Randomized Sampling

Y_{Maria}
Y_{William}
Y_{Rich}
Y_{Sarah}
Y_{Alondra}
$Y_{\text{Jesús}}$

$$S_{\text{Maria}} = 1$$

$$S_{\text{William}} = 0$$

$$S_{\text{Rich}} = 0$$

$$S_{\text{Sarah}} = 1$$

$$S_{\text{Alondra}} = 0$$

$$S_{\text{Jesús}} = 1$$

Exchangeable sampling from a population

Population Outcomes	Randomized Sampling	Sampled Outcomes
Y_{Maria}	$S_{\text{Maria}} = 1$	Y_{Maria}
Y_{William}	$S_{\text{William}} = 0$	
Y_{Rich}	$S_{\text{Rich}} = 0$	
Y_{Sarah}	$S_{\text{Sarah}} = 1$	Y_{Sarah}
Y_{Alondra}	$S_{\text{Alondra}} = 0$	
$Y_{\text{Jesús}}$	$S_{\text{Jesús}} = 1$	$Y_{\text{Jesús}}$

Exchangeable sampling from a population

Population Outcomes	Randomized Sampling	Sampled Outcomes	Estimator:
Y_{Maria}	$S_{\text{Maria}} = 1$	Y_{Maria}	Estimate the population mean by the sample mean
Y_{William}	$S_{\text{William}} = 0$		
Y_{Rich}	$S_{\text{Rich}} = 0$		
Y_{Sarah}	$S_{\text{Sarah}} = 1$	Y_{Sarah}	
Y_{Alondra}	$S_{\text{Alondra}} = 0$		
$Y_{\text{Jesús}}$	$S_{\text{Jesús}} = 1$	$Y_{\text{Jesús}}$	

Key assumption:
Sampled and unsampled units are **exchangeable** due to random sampling

$$Y \perp S$$

Now suppose our population all participate
in a randomized experiment with
treatment ($A = 1$) and control ($A = 0$) conditions

Exchangeable treatment assignment

Population Potential Outcomes

Y_{Maria}^1
Y_{William}^1
Y_{Rich}^1
Y_{Sarah}^1
Y_{Alondra}^1
$Y_{\text{Jesús}}^1$

Exchangeable treatment assignment

Population Potential Outcomes	Randomized Treatment
Y_{Maria}^1	$A_{\text{Maria}} = 1$
Y_{William}^1	$A_{\text{William}} = 0$
Y_{Rich}^1	$A_{\text{Rich}} = 0$
Y_{Sarah}^1	$A_{\text{Sarah}} = 1$
Y_{Alondra}^1	$A_{\text{Alondra}} = 0$
$Y_{\text{Jesús}}^1$	$A_{\text{Jesús}} = 1$

Exchangeable treatment assignment

Population Potential Outcomes	Randomized Treatment	Observed Outcomes
Y_{Maria}^1	$A_{\text{Maria}} = 1$	Y_{Maria}^1
Y_{William}^1	$A_{\text{William}} = 0$	
Y_{Rich}^1	$A_{\text{Rich}} = 0$	
Y_{Sarah}^1	$A_{\text{Sarah}} = 1$	Y_{Sarah}^1
Y_{Alondra}^1	$A_{\text{Alondra}} = 0$	
$Y_{\text{Jesús}}^1$	$A_{\text{Jesús}} = 1$	$Y_{\text{Jesús}}^1$

Exchangeable treatment assignment

Population Potential Outcomes	Randomized Treatment	Observed Outcomes	Estimator:
Y_{Maria}^1	$A_{\text{Maria}} = 1$	Y_{Maria}^1	Estimate the population mean $E(Y^1)$ by the untreated sample mean
Y_{William}^1	$A_{\text{William}} = 0$		
Y_{Rich}^1	$A_{\text{Rich}} = 0$		
Y_{Sarah}^1	$A_{\text{Sarah}} = 1$	Y_{Sarah}^1	
Y_{Alondra}^1	$A_{\text{Alondra}} = 0$		
$Y_{\text{Jesús}}^1$	$A_{\text{Jesús}} = 1$	$Y_{\text{Jesús}}^1$	

Key assumption: Treated and untreated units are **exchangeable** due to random treatment assignment

$$Y^1 \perp\!\!\!\perp A$$

Exchangeable treatment assignment

Population Potential Outcomes	Randomized Treatment	Observed Outcomes	Estimator:
Y_{Maria}^0	$A_{\text{Maria}} = 1$		Estimate the population mean $E(Y^0)$ by the untreated sample mean
Y_{William}^0	$A_{\text{William}} = 0$	Y_{William}^0	
Y_{Rich}^0	$A_{\text{Rich}} = 0$	Y_{Rich}^0	
Y_{Sarah}^0	$A_{\text{Sarah}} = 1$		
Y_{Alondra}^0	$A_{\text{Alondra}} = 0$	Y_{Alondra}^0	
$Y_{\text{Jesús}}^0$	$A_{\text{Jesús}} = 1$		

Key assumption: Treated and untreated units are **exchangeable** due to random treatment assignment

$$Y^0 \perp A$$

Exchangeable treatment assignment

Population Potential Outcomes	Randomized Treatment	Observed Outcomes
Y^1_{Maria}	Y^0_{Maria}	$A_{\text{Maria}} = 1$
Y^1_{William}	Y^0_{William}	$A_{\text{William}} = 0$
Y^1_{Rich}	Y^0_{Rich}	$A_{\text{Rich}} = 0$
Y^1_{Sarah}	Y^0_{Sarah}	$A_{\text{Sarah}} = 1$
Y^1_{Alondra}	Y^0_{Alondra}	$A_{\text{Alondra}} = 0$
$Y^1_{\text{Jesús}}$	$Y^0_{\text{Jesús}}$	$A_{\text{Jesús}} = 1$

Exchangeable treatment assignment

Causal Estimand:

- (expected outcome if assigned to treatment)
- (expected outcome if assigned to control)

$$E(Y^1) - E(Y^0)$$

Exchangeability Assumption:

Potential outcomes are independent of treatment assignment

$$\{Y^0, Y^1\} \perp\!\!\!\perp A$$

Empirical Estimand:

- (expected outcome among the treated)
- (expected outcome among the untreated)

$$E(Y | A = 1) - E(Y | A = 0)$$

Exchangeable treatment assignment: Proof

$$\begin{aligned} & E(Y^1) - E(Y^0) \\ &= E(Y^1 | A = 1) - E(Y^0 | A = 0) \\ &= E(Y | A = 1) - E(Y | A = 0) \end{aligned}$$

Exchangeable treatment assignment: Proof

$$\begin{aligned} & E(Y^1) - E(Y^0) \\ &= E(Y^1 | A = 1) - E(Y^0 | A = 0) \\ &= E(Y | A = 1) - E(Y | A = 0) \quad \text{by consistency} \end{aligned}$$

Exchangeable treatment assignment: Proof

$$\begin{aligned} & E(Y^1) - E(Y^0) \\ &= E(Y^1 | A = 1) - E(Y^0 | A = 0) \quad \text{by exchangeability} \\ &= E(Y | A = 1) - E(Y | A = 0) \quad \text{by consistency} \end{aligned}$$

Exchangeable treatment assignment: Proof

$$\begin{aligned} & E(Y^1) - E(Y^0) \\ &= E(Y^1 | A = 1) - E(Y^0 | A = 0) \quad \text{by exchangeability} \\ &= E(Y | A = 1) - E(Y | A = 0) \quad \text{by consistency} \end{aligned}$$

This is an example of **causal identification**:
using assumptions to arrive at an empirical quantity
(involving only factual random variables, no potential outcomes)
that equals our causal estimand if the assumptions hold

The causal estimand $E(Y^1) - E(Y^0)$ is **identified** by the empirical
estimand $E(Y | A = 1) - E(Y | A = 0)$