

Foundations of Causal Inference

(The Potential Outcomes Framework)

Ian Lundberg¹

¹Assistant Professor, Sociology, UCLA, ianlundberg@ucla.edu

Learning goals for today

- ▶ fundamental problem of causal inference
- ▶ potential outcomes
- ▶ recall mathematical concepts from probability
 - ▶ random variables
 - ▶ expectation
 - ▶ conditional expectation

Causal claims hinge on arguments, not on data

Left photo: By Fernando Frazão/Agência Brasil -

http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CC BY 3.0 br, <https://commons.wikimedia.org/w/index.php?curid=50548410>

Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar, CC BY 2.0, <https://commons.wikimedia.org/w/index.php?curid=50584648>

Causal claims hinge on arguments, not on data

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	?
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	No (0)	No (0)	?

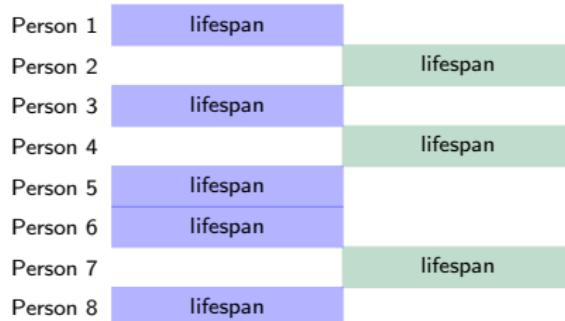
Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.


	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	No (0)	No (0)	0

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Outcome
under
Mediterranean
diet

Outcome
under
standard
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Causal claim

Person 1	lifespan	
Person 2		lifespan
Person 3	lifespan	
Person 4		lifespan
Person 5	lifespan	
Person 6	lifespan	
Person 7		lifespan
Person 8	lifespan	

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Causal claim

Person 1	lifespan	missing
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

average lifespan — average lifespan

Causal claim

average lifespan — average lifespan

Causal inference is a **missing data** problem

Person 1	lifespan	missing
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Mathematical notation: Potential outcomes

Mathematical notation: Potential outcomes

Mathematical notation: Potential outcomes

Y_i Outcome
 A_i Treatment

Whether person i survived
Whether person i ate a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

$$Y_{\text{Ian}} = \text{survived}$$

Ian survived

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

$$Y_{\text{Ian}} = \text{survived}$$

Ian survived

$$A_{\text{Ian}} = \text{MediterraneanDiet}$$

Ian ate a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet
$Y_{\text{Ian}}^{\text{StandardDiet}}$ = died	Ian would die on a standard diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet
$Y_{\text{Ian}}^{\text{StandardDiet}}$ = died	Ian would die on a standard diet

Discuss.

Which potential outcome is observed?

Which is counterfactual?

The consistency assumption

The consistency assumption

$Y_i^{\text{MediterraneanDiet}}$

$Y_i^{\text{StandardDiet}}$

Potential Outcomes

The consistency assumption

The consistency assumption

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

$Y_i^{\text{MediterraneanDiet}}$

$Y_i^{\text{StandardDiet}}$

Potential Outcomes

Y_i

Factual Outcomes

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

Y_{lan} ^{MediterraneanDiet} = survived

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$

The outcome for a random person is a **random variable**

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet
- ▶ The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ▶ takes the value survived if we randomly sample some people
 - ▶ takes the value died if we randomly sample others

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet
- ▶ The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ▶ takes the value survived if we randomly sample some people
 - ▶ takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The **expectation operator** $E()$ denotes the population mean

$$E(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The **expectation operator** $E()$ denotes the population mean

$$E(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

A **conditional expectation** is denoted with a vertical bar

$$E(Y | A = a) = \frac{1}{n_a} \sum_{i: A_i = a} Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} \mid \text{Degree} = \text{TRUE}) > E(\text{Earnings} \mid \text{Degree} = \text{FALSE})$
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} | \text{Degree} = \text{TRUE}) > E(\text{Earnings} | \text{Degree} = \text{FALSE})$
 - ▶ Average earnings are higher among those with college degrees
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} \mid \text{Degree} = \text{TRUE}) > E(\text{Earnings} \mid \text{Degree} = \text{FALSE})$
 - ▶ Average earnings are higher among those with college degrees
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$
 - ▶ On average, a degree causes higher earnings

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't
2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$E(\text{Learning} \mid \text{HW} = \text{TRUE}) > E(\text{Learning} \mid \text{HW} = \text{FALSE})$$

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$E(\text{Learning} \mid \text{HW} = \text{TRUE}) > E(\text{Learning} \mid \text{HW} = \text{FALSE})$$

2. On average, doing the homework causes more learning

$$E(\text{Learning}^{\text{HW}=\text{TRUE}}) > E(\text{Learning}^{\text{HW}=\text{FALSE}})$$

Challenge exercise: Causal inference with interference

Person 1 races against Person 2.

Use potential outcomes math to write:

- ▶ If Person 1 gets a head start and Person 2 does not, then Person 1 wins.
- ▶ If neither gets a head start, then Person 2 wins.

Some things to consider:

- ▶ What is the unit of analysis?
- ▶ What is the outcome?
- ▶ What is / are the treatment(s)?

Learning goals for today

- ▶ fundamental problem of causal inference
- ▶ potential outcomes
- ▶ recall mathematical concepts from probability
 - ▶ random variables
 - ▶ expectation
 - ▶ conditional expectation

Resources to learn more

- ▶ Hernán, M.A., & J.M. Robins. 2020.
Causal Inference: What If?
Boca Raton: Chapman & Hall / CRC.
- ▶ Imbens, G. W., & Rubin, D. B. 2015.
Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press.
- ▶ Brand, J. E. 2023.
Overcoming the Odds: The Benefits of Completing College for Unlikely Graduates.
Russell Sage Foundation.