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Plan for today

▶ Estimands in quantitative social science

▶ Descriptive estimands: A Ŷ view

▶ Intro to a computer tutorial
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Source of 5 million cases

▶ American Community Survey (ACS) 2010–2019

▶ Adults age 30–50

▶ Worked 35+ hours per week in 50+ weeks last year

▶ Outcome: Annual wage and salary income

https://ilundberg.github.io/description/
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Implications of a Ŷ view of description
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▶ a model as a means to an end
▶ we would rather not model
▶ model only when you lack data

▶ misspecified models are ok
▶ flat model was wrong
▶ flat model was best (lower variance)

▶ machine learning becomes a plug-in
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Implications of a Ŷ view of description
ilundberg.github.io/description

▶ a model as a means to an end
▶ we would rather not model
▶ model only when you lack data

▶ misspecified models are ok
▶ flat model was wrong
▶ flat model was best (lower variance)

▶ machine learning becomes a plug-in

https://ilundberg.github.io/description/
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machine learning becomes a plug-in
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Computer tutorial: Introduction
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We will give you data:

▶ male and female incomes at age 30–50 in 2010–2019

You will make a forecast:

▶ male and female geometric mean income at age 30–50 in 2022
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Computer tutorial: Introduction
ilundberg.github.io/description

We will give you data:

▶ male and female incomes at age 30–50 in 2010–2019

You will make a forecast:

▶ male and female geometric mean income at age 30–50 in 2022

We will see who comes closest

▶ to gold-standard truth from ACS 2022
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Ian Lundberg Kristin Liao
ianlundberg.org kristinliao.com
ianlundberg@ucla.edu ktliao@ucla.edu

https://www.ianlundberg.org/
https://www.kristinliao.com/
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