
Non-existent outcomes in research

on inequality: A causal approach

Ian Lundberg
UCLA Sociology and
California Center for
Population Research

Soonhong Cho
UCLA Political Science and
California Center for
Population Research

28 June 2025
University of Tokyo

Research reported in this presentation was supported by
the Eunice Kennedy Shriver National Institute of Child
Health & Human Development of the National Institutes
of Health under Award Number P2CHD041022.

Ian Lundberg (UCLA)



Some outcomes exist only for some people

▶ only employed people have an hourly wage

▶ only married people can report marital satisfaction

▶ only people with children have descendants
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Our goals in this paper

When researchers drop missing outcomes,

▶ inequality can be obscured

▶ we may miss causal effects

We provide methods to study both:

▶ effects on outcome existence (employment)

▶ effects on outcome values (wage)
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One concrete setting

Parenthood reduces hourly wages for women
(Budig & England 2001; Gough & Noonan 2013)

and increases wages for men
(Killewald 2013; Yu & Hara 2021)

The motherhood wage penalty may be disappearing over time
(Pal & Waldfogel 2016; Buchmann & McDaniel 2016; but see Jee et al. 2019)
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Data: NLSY97

Parents
1,985 mothers
1,837 fathers

Pre Birth
First

Post

• • •
9+

months
12+

months

Non-Parents
person-periods persons

women 20,543 2,794
men 25,902 3,436

• • allowed to
subsequently

have a
child

21+
months

measure
confounders

measure
outcome
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log(Wage) = β0 + β1(Mother)

+ β2(Age)

+ β3(Married)

+ β4(Education)

+ β5(Work Experience)

+ β6(Full-Time)

+ β7(Tenure in Job)

+ ϵ
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Goal 1: Effect on outcome existence
Causal Estimand

Define potential outcomes:
S1 = whether employed as a parent
S0 = whether employed as a non-parent

Causal estimand
E(S1 − S0 | A = 1)
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Goal 1: Effect on outcome existence
Causal Assumptions

X⃗

Motherhood Employed

Where X⃗ includes age, education, marital status, full-time
employment, job tenure, work experience, and wage and

employment each lagged by one year.
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Goal 1: Effect on outcome existence
Estimation Strategy

▶ Regress Y on treatment and confounders

▶ Predict for all mothers average

1

nMothers

∑(
Ŷ 1
i − Ŷ 0

i

)

Ian Lundberg (UCLA)



Results for mothers
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Goal 2: Effect on outcome value
Causal Estimand

τ = E

(
Y 1 − Y 0︸ ︷︷ ︸

Effect of Treatment
on Outcome Value

| A = 1︸ ︷︷ ︸
Among

the Treated

, S1 = S0 = 1︸ ︷︷ ︸
Whose Outcome
Exists Regardless
of Treatment

)
(1)

Effect of motherhood on wage
among mothers who would be employed
as a parent or as a non-parent
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Causal assumption: Exchangeability

X⃗

Motherhood Employed Wage

U
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Causal assumption: Monotonicity

S1
i ≤ S0

i for all i (negative monotonicity) (2)

A woman who would be employed as a non-mother (S0
i = 1)

would also be employed as a mother (S1
i = 1)
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Causal assumption: Mean dominance

E(Y 0 | X⃗ = x⃗ , S0 = S1 = 1) ≥

E(Y 0 | X⃗ = x⃗ , S0 = 1,S1 = 0) ∀x⃗

Women employed regardless of motherhood
would have higher mean wages as non-mothers
than women employed only if they were non-mothers
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Identification: Making use of the assumptions

Recall that our goal is:(
mean factual

wage

)
−

(
mean counterfactual wage

as non-mothers

)
among mothers employed regardless of motherhood.
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Identification: Mean factual wage as mothers

We observe mothers with a wage distribution

Y  |  S = 1 ,  A = 1 , X = xi

By assumption (monotonicity),
all would also be employed as non-mothers

Estimate E(Y 1 | A = 1, S0 = S1 = 1, X⃗ ) by the mean.
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Identification: Counterfactual wage as non-mothers

We observe wages
among non-mothers

Y  |  S = 1 ,  A = 0 , X = xi

But some of them would not be employed as mothers

employed
as mothers

not employed
as mothers

0% 50% 100%

Two extreme possibilities:

Upper Bound:
Mean of Blue Region

Lower Bound:
Mean of Blue Region
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Estimation by regression and simulation

Each arrow is a conditional
average causal effect0.25
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Example:
Logistic regression for survival
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Estimation by regression and simulation
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Review of our strategy

1. Define the causal estimands

2. Make causal assumptions (e.g., DAG + monotonicity)

3. Model Y among those with outcomes

4. Simulate a distribution for counterfactual estimation

5. Create bounds by considering extremes
▶ Target subgroup are the highest paid
▶ Target subgroup are the lowest paid
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Results: Effect of motherhood on wages
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Discussion: Building on past work

When you can’t point-identify,
make assumptions to set-identify (Manski 1995, 2003)

Principal stratification already did this (Frangakis & Rubin 2002)

Our new piece:
Regression + simulation for observational studies
with measured confounders
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In social stratification,
many causes of outcome values
may also shape outcome existence
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Differences from Heckman selection model

Our DAG

Motherhood Employed Wage

X⃗

U

Heckman DAG

Motherhood
Offer
Wage

Employed

X⃗

Instrument

U
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