
Algorithms for prediction

For two sessions, we will cover a few algorithms for prediction. We aim to

• draw connections between algorithms often viewed as classical statistics (e.g., multilevel
models) and those often viewed as machine learning (e.g., penalized regression)

• by learning a few new methods, become comfortable with the skills to read about addi-
tional new methods on your own in the future

This page contains embedded R code. If you are a Stata user, you can download do files that
illustrate Ordinary Least Squares, multilevel models, ridge regression, LASSO regression, and
trees and forests.

A version of this page in slide format is available here:

• slides through LASSO regression

Data: Baseball salaries

We will explore algorithms for prediction through a simple example dataset. The data contain
the salaries of all 944 Major League Baseball Players who were on active rosters, injured lists,
and restricted lists on Opening Day 2023. These data were compiled by USA Today. After
scraping the data and selecting a few variables, I appended each team’s win-loss record from
2022. The data are available in baseball_population.csv.

library(tidyverse)
library(scales)
library(foreach)

baseball_population <- read_csv("https://ilundberg.github.io/soc212b/data/baseball_population.csv")

The first rows of the data are depicted below. Each row is a player. The player Madison
Bumgarner had a salary of $21,882,892. His position was LHP for left-handed pitcher. His
team was Arizona, and this team’s record in the previous season was 0.457, meaning that they
won 45.7% of their games.
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# A tibble: 944 x 5
player salary position team team_past_record
<chr> <dbl> <chr> <chr> <dbl>

1 Bumgarner, Madison 21882892 LHP Arizona 0.457
2 Marte, Ketel 11600000 2B Arizona 0.457
3 Ahmed, Nick 10375000 SS Arizona 0.457
# i 941 more rows

We will summarize mean salaries. Some useful facts about mean salaries are that they vary
substantially across positions and also across teams.

baseball_population |>
group_by(position) |>
summarize(salary = mean(salary)) |>
mutate(position = fct_reorder(position, -salary)) |>
ggplot(aes(x = position, y = salary)) +
geom_bar(stat = "identity") +
geom_text(

aes(
label = label_currency(
scale = 1e-6, accuracy = .1, suffix = " m"

)(salary)
),
y = 0, color = "white", size = 3, fontface = "bold",
vjust = -1

) +
scale_y_continuous(

name = "Average Salary",
labels = label_currency(scale = 1e-6, accuracy = 1, suffix = " million")

) +
scale_x_discrete(

name = "Position",
labels = function(x) {
case_when(
x == "C" ~ "C\nCatcher",
x == "RHP" ~ "RHP\nRight-\nHanded\nPitcher",
x == "LHP" ~ "LHP\nLeft-\nHanded\nPitcher",
x == "1B" ~ "1B\nFirst\nBase",
x == "2B" ~ "2B\nSecond\nBase",
x == "SS" ~ "SS\nShortstop",
x == "3B" ~ "3B\nThird\nBase",
x == "OF" ~ "OF\nOutfielder",
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x == "DH" ~ "DH\nDesignated\nHitter"
)

}
) +
theme(axis.text.x = element_text(size = 7)) +
ggtitle("Baseball salaries vary across positions")
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Baseball salaries vary across positions

baseball_population |>
group_by(team) |>
summarize(

salary = mean(salary),
team_past_record = unique(team_past_record)

) |>
ggplot(aes(x = team_past_record, y = salary)) +
geom_point() +
ggrepel::geom_text_repel(

aes(label = team),
size = 2

) +
scale_x_continuous(

name = "Team Past Record: Proportion Wins in 2022"
) +
scale_y_continuous(
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name = "Team Average Salary in 2023",
labels = label_currency(
scale = 1e-6,
accuracy = 1,
suffix = " million"

)
) +
ggtitle("Baseball salaries vary across teams")
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Baseball salaries vary across teams

Task: Predict the Dodgers’ mean salary

As a task, we will often focus on estimating the mean salary of the L.A. Dodgers. Because we
have the full population of data, we can calculate the answer directly:

true_dodger_mean <- baseball_population |>
# Restrict to the Dodgers
filter(team == "L.A. Dodgers") |>
# Record the mean salary
summarize(mean_salary = mean(salary)) |>
# Pull that estimate out of the data frame to just be a number
pull(mean_salary)
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The true Dodger mean salary on Opening Day 2023 was $6,232,196. We will imagine that we
don’t know this number. Instead of having the full population, we will imagine we have

• information on predictors for all players: position, team, team past record
• information on salary for a random sample of 5 players per team

baseball_sample <- baseball_population |>
group_by(team) |>
slice_sample(n = 5) |>
ungroup()

In our sample, we observe the salaries of 5 players per team. Our 5 sampled Dodger players
have an average salary of $7,936,238.

# A tibble: 5 x 5
player salary position team team_past_record
<chr> <dbl> <chr> <chr> <dbl>

1 Phillips, Evan 1300000 RHP L.A. Dodgers 0.685
2 Miller, Shelby 1500000 RHP L.A. Dodgers 0.685
3 Taylor, Chris 15000000 OF L.A. Dodgers 0.685
4 Betts, Mookie 21158692 OF L.A. Dodgers 0.685
5 Outman, James 722500 OF L.A. Dodgers 0.685

Our task is to predict the salary for all 35 Dodger players and average those predictions to
yield a predicted vaue of the Dodgers’ mean salary on opening day 2023. The data we will use
to predict include all variables except the outcome for the Dodger players.

dodgers_to_predict <- baseball_population |>
filter(team == "L.A. Dodgers") |>
select(-salary)

Ordinary Least Squares

To walk through the steps of our prediction task, we first consider Ordinary Least Squares.
After walking through these steps, we will consider a series of more advanced algorithms for
prediction that involve similar steps.

For OLS, we might model salary as a function of team_past_record. The code below learns
this model in our sample.
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ols <- lm(
salary ~ team_past_record,
data = baseball_sample

)

We can then make a prediction for every player on the Dodgers. Because our only predictor is
a team-level predictor (team_past_record), the prediction will be the same for every player.
But this may not always be the case, as further down the page when we consider position as
an additional predictor.

ols_predicted <- dodgers_to_predict |>
mutate(predicted_salary = predict(ols, newdata = dodgers_to_predict)) |>
print(n = 3)

# A tibble: 35 x 5
player position team team_past_record predicted_salary
<chr> <chr> <chr> <dbl> <dbl>

1 Freeman, Freddie 1B L.A. Dodgers 0.685 5552999.
2 Heyward, Jason OF L.A. Dodgers 0.685 5552999.
3 Betts, Mookie OF L.A. Dodgers 0.685 5552999.
# i 32 more rows

Finally, we can average over these predictions to estimate the mean salary on the Dodgers.

ols_estimate <- ols_predicted |>
summarize(ols_estimate = mean(predicted_salary))

By OLS prediction, we estimate that the mean Dodger salary was $5.6 million. Because we
estimated in a sample and under some modeling assumptions, this is a bit lower than the true
population mean of $6.2 million.

Performance over repeated samples

Because this is a hypothetical setting, we can consider the performance of our estimator
across repeated samples. The chunk below pulls our code into a single function that we call
estimator(). The estimator takes a sample and returns an estimate.
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ols_estimator <- function(
sample = baseball_sample,
to_predict = dodgers_to_predict

) {
# Learn a model in the sample
ols <- lm(

salary ~ team_past_record,
data = sample

)
# Predict for our target population
ols_predicted <- to_predict |>

mutate(predicted_salary = predict(ols, newdata = to_predict))
# Average over the target population
ols_estimate_star <- ols_predicted |>

summarize(ols_estimate = mean(predicted_salary)) |>
pull(ols_estimate)

# Return the estimate
return(ols_estimate_star)

}

We can run the estimator repeatedly, getting one estimate for each repeated sample from the
population. This exercise is possible because in this simplified setting we have data on the full
population.

many_sample_estimates <- foreach(
repetition = 1:100, .combine = "c"

) %do% {
# Draw a sample from the population
baseball_sample <- baseball_population |>

group_by(team) |>
slice_sample(n = 5) |>
ungroup()

# Apply the estimator to the sample
estimate <- ols_estimator(baseball_sample)
return(estimate)

}

Then we can visualize the performance across repeated samples.

tibble(y = many_sample_estimates) |>
# Random jitter for x
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mutate(x = runif(n(), -.1, .1)) |>
ggplot(aes(x = x, y = many_sample_estimates)) +
geom_point() +
scale_y_continuous(

name = "Dodger Mean Salary",
labels = label_millions

) +
theme_minimal() +
scale_x_continuous(

breaks = NULL, limits = c(-.5,.5),
name = "Each dot is an OLS estimate\nin one sample from the population"

) +
geom_hline(yintercept = true_dodger_mean, linetype = "dashed") +
annotate(geom = "text", x = -.5, y = true_dodger_mean, hjust = 0, vjust = -.5, label = "True mean in\nDodger subpopulation", size = 3)
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Across repeated samples, the estimates have a standard deviation of $1.3 million and are on
average $1.2 million too high.

Model approximation error

An OLS model for salary that is linear in the team past record clearly suffers from model
approximation error. If you fit a regression line to the entire population of baseball players
you would see that th Dodger’s mean salary is below this line.

population_ols <- lm(salary ~ team_past_record, data = baseball_population)
forplot <- baseball_population |>
mutate(fitted = predict(population_ols)) |>
group_by(team) |>
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summarize(
truth = mean(salary),
fitted = unique(fitted),
team_past_record = unique(team_past_record)

)
forplot_dodgers <- forplot |> filter(team == "L.A. Dodgers")
forplot |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = truth, color = team == "L.A. Dodgers")) +
geom_line(aes(y = fitted)) +
geom_segment(

data = forplot_dodgers,
aes(
yend = fitted - 3e5, y = truth + 3e5,

),
arrow = arrow(length = unit(.05,"in"), ends = "both"), color = "dodgerblue"

) +
geom_text(

data = forplot_dodgers,
aes(
x = team_past_record + .02,
y = .5 * (fitted + truth),
label = "model\napproximation\nerror"

),
size = 2, color = "dodgerblue", hjust = 0

) +
geom_text(

data = forplot_dodgers,
aes(y = truth, label = "L.A.\nDodgers"),
color = "dodgerblue",
vjust = 1.8, size = 2

) +
scale_color_manual(

values = c("gray","dodgerblue")
) +
scale_y_continuous(

name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_x_continuous(limits = c(.3,.8), name = "Team Past Record: Proportion Wins in 2022") +
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theme_classic() +
theme(legend.position = "none")
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How can we solve model approximation error? One might replace the linear term
team_past_record with a series of categories for team in the OLS model.

ols_team_categories <- lm(
salary ~ team,
data = baseball_sample

)

But because the sample contains only 5 players per team, these estimates are quite noisy.

# Create many sample estimates with categorical teams
many_sample_estimates_categories <- foreach(
repetition = 1:100, .combine = "c"

) %do% {
# Draw a sample from the population
baseball_sample <- baseball_population |>

group_by(team) |>
slice_sample(n = 5) |>
ungroup()

# Apply the estimator to the sample# Learn a model in the sample
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ols <- lm(
salary ~ team,
data = baseball_sample

)
# Predict for our target population
ols_predicted <- dodgers_to_predict |>

mutate(predicted_salary = predict(ols, newdata = dodgers_to_predict))
# Average over the target population
ols_estimate <- ols_predicted |>

summarize(ols_estimate = mean(predicted_salary)) |>
pull(ols_estimate)

# Return the estimate
return(ols_estimate)

}
# Visualize
tibble(x = "OLS linear in\nteam past record", y = many_sample_estimates) |>
bind_rows(

tibble(x = "OLS with categorical\nteam indicators", y = many_sample_estimates_categories)
) |>
ggplot(aes(x = x, y = y)) +
geom_jitter(width = .2, height = 0) +
scale_y_continuous(

name = "Dodger Mean Salary",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
theme_minimal() +
scale_x_discrete(

name = "Estimator"
) +
ggtitle(NULL, subtitle = "Each dot is an estimate in one sample from the population") +
geom_hline(yintercept = true_dodger_mean, linetype = "dashed") +
annotate(geom = "text", x = .4, y = true_dodger_mean, hjust = 0, vjust = .5, label = "Truth in\npopulation", size = 3)
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We would like to make the model more flexible to reduce model approximation error, while
also avoiding high variance. To balance these competing objectives, we need a new strategy
from machine learning.

A big idea: Regularization

Regularization encompasses a broad class of approaches designed for models that have many
parameters, such as a unique intercept for every team in Major League Baseball. Regulariza-
tion allows us to estimate many parameters while pulling them toward some common value in
order to reduce the high variance that tends to results.

As one concrete example of regularization, we might want a middle ground between two
extremes:

• our OLS linear prediction: ̂𝑌 Linear
Dodgers = ̂𝛼 + ̂𝛽(Past Record)Dodgers = $3.9 million

• the mean of the 5 sampled Dodger salaries: ̂𝑌 Nonparametric
Dodgers = $7.9 million

A regularized estimator could be a weighted average of these two, with weight 𝑤 placed on
the nonparametric mean and weight 1 − 𝑤 placed on the linear prediction.

̂𝜏 = 𝑤 ̂𝑌 Nonparametric
Dodgers + (1 − 𝑤) ̂𝑌 Linear

Dodgers

The graph below visualizes the resulting estimate at various values of 𝑤. The regularized
estimates are partially pooled toward the linear model prediction, with the amount of pooling
controlled by 𝑤.

12



estimates_by_w <- foreach(w_value = seq(0,1,.05), .combine = "rbind") %do% {
tibble(

w = w_value,
estimate = (1 - w) * dodger_sample_mean + w * ols_estimate

)
}
estimates_by_w |>
ggplot(aes(x = w, y = estimate)) +
geom_point() +
geom_line() +
geom_text(

data = estimates_by_w |>
filter(w %in% c(0,1)) |>
mutate(
w = w + c(1,-1) * .13,
hjust = c(0,1),
label = c("Nonparametric Dodger Sample Mean",

"Linear Prediction from OLS")
),

aes(label = label, hjust = hjust)
) +
geom_segment(

data = estimates_by_w |>
filter(w %in% c(0,1)) |>
mutate(x = w + c(1,-1) * .12,

xend = w + c(1,-1) * .04),
aes(x = x, xend = xend),
arrow = arrow(length = unit(.08,"in"))

) +
annotate(

geom = "text", x = .3, y = estimates_by_w$estimate[12],
label = "Partial\nPooling\nEstimates",
vjust = 1

) +
annotate(

geom = "segment",
x = c(.3,.4),
xend = c(.3,.55),
y = estimates_by_w$estimate[c(11,14)],
yend = estimates_by_w$estimate[c(8,14)],
arrow = arrow(length = unit(.08,"in"))

) +
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scale_x_continuous("Weight: Amount of Shrinkage Toward Linear Fit") +
scale_y_continuous(

labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

),
name = "Dodger Mean Salary Estimates",
expand = expansion(mult =.1)

) +
theme_minimal()
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Partial pooling is one way to navigate the bias-variance tradeoff: it allows us to have a flexible
model while reducing the high amount of variance that such a model can create. In our case,
the best estimator lies somewhere between the fully-pooled estimator (linear regression) and
the fully-separate estimator (unique intercepts for each team).

One way to formally investigate the properties of our estimator is by defining a concept known
as expected squared error. Let ̂𝜇Dodgers be an estimator: a function that when applied to a
sample 𝑆 returns an estimate ̂𝜇Dodgers(𝑆). The squared error of this estimator in a particular
sample 𝑆 is ( ̂𝜇Dodgers(𝑆) − 𝜇Dodgers)2. Expected squared error is the expected value of this
performance taken across repeated samples 𝑆 from the population.

Expected Squared Error( ̂𝜇Dodgers) = E𝑆 (( ̂𝜇Dodgers(𝑆) − 𝜇Dodgers)
2)
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Ordinarily, one has only one sample and cannot directly calculate expected squared error.
But our setting is useful for pedagogical purposes because we have the full population of
baseball players and can repeatedly draw samples to evaluate performance. Below, we simulate
𝑟 = 1, … , 100 repeated samples and estimated expected squared error by the mean squared
error of the estimates ̂𝜇Dodgers(𝑆𝑟) that we get from each simulated sample 𝑆𝑟.

̂Expected Squared Error( ̂𝜇Dodgers) = 1
100

100
∑
𝑟=1

( ̂𝜇Dodgers(𝑆𝑟) − 𝜇Dodgers)
2

repeated_simulations <- foreach(rep = 1:100, .combine = "rbind") %do% {

a_sample <- baseball_population |>
group_by(team) |>
slice_sample(n = 5) |>
ungroup()

ols_fit <- lm(salary ~ team_past_record, data = a_sample)

ols_estimate <- predict(
ols_fit,
newdata = baseball_population |>
filter(team == "L.A. Dodgers") |>
distinct(team_past_record)

)

nonparametric_estimate <- a_sample |>
filter(team == "L.A. Dodgers") |>
summarize(salary = mean(salary)) |>
pull(salary)

foreach(w_value = seq(0,1,.05), .combine = "rbind") %do% {
tibble(
w = w_value,
estimate = w * ols_estimate + (1 - w) * nonparametric_estimate

)
}

}

aggregated <- repeated_simulations |>
group_by(w) |>
summarize(mse = mean((estimate - true_dodger_mean) ^ 2)) |>
mutate(best = mse == min(mse))
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aggregated |>
ggplot(aes(x = w, y = mse, color = best)) +
geom_line() +
geom_point() +
scale_y_continuous(name = "Expected Squared Error\nfor Dodger Mean Salary") +
scale_x_continuous(name = "Weight: Amount of Shrinkage Toward Linear Fit") +
scale_color_manual(values = c("black","dodgerblue")) +
geom_vline(xintercept = c(0,1), linetype = "dashed") +
theme_minimal() +
theme(legend.position = "none") +
annotate(

geom = "text",
x = c(0.02,.98),
y = range(aggregated$mse),
hjust = c(0,1), vjust = c(0,1),
size = 3,
label = c(
"Nonparametric estimator:\nDodger mean salary",
"Model-based estimator:\nOLS linear prediction"

)
) +
annotate(

geom = "text",
x = aggregated$w[aggregated$best],
y = min(aggregated$mse) + .2 * diff(range(aggregated$mse)),
vjust = -.1,
label = "Best-Performing\nEstimator",
size = 3,
color = "dodgerblue"

) +
annotate(

geom = "segment",
x = aggregated$w[aggregated$best],
y = min(aggregated$mse) + .18 * diff(range(aggregated$mse)),
yend = min(aggregated$mse) + .05 * diff(range(aggregated$mse)),
arrow = arrow(length = unit(.08,"in")),
color = "dodgerblue"

)
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In this illustration, the best performance is an estimator that puts 75% of the weight on the
linear fit and 25% of the weight on the mean among the 5 sampled Dodgers.

The example above illustrates an idea known as regularization, shrinkage, or partial pooling:
we may often want to combine an estimate on a subgroup (the Dodger mean) with an estimate
made on the full population (the linear fit). We will consider various methods to accomplish
regularization, and we will return at the end to consider connections among them.

Multilevel models

Multilevel models1 are an algorithm for prediction that is fully grounded in classical statistics.
They are especially powerful for the problem depicted above: making predictions when there
are many groups (teams) with a small sample size in each group.

We will first illustrate a multilevel model’s performance and then consider the statistics behind
this model. We will estimate using the lme4 package. If you don’t have this package, install
it with install.packages("lme4").

library(lme4)

In the syntax, the code (1 | team) says that our model should have a unique intercept for
every team, and that these intercepts should be regularized (more on this soon).

1Raudenbush, S. W., and A.S. Bryk. (2002). Hierarchical linear models: Applications and data analysis
methods. Advanced Quantitative Techniques in the Social Sciences Series/SAGE.
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multilevel <- lmer(salary ~ team_past_record + (1 | team), data = baseball_sample)

We can make predictions from a multilevel model just like we can from OLS. For example, the
code below makes predictions for the Dodgers.

multilevel_predicted <- dodgers_to_predict |>
mutate(

fitted = predict(multilevel, newdata = dodgers_to_predict)
)

Intuition

The multilevel model is a partial-pooling estimator. The figure below displays this visually.
For each team, the solid dot is the mean salary among the 5 sampled players. The ends of
the arrows are the multilevel model estimates. The multilevel model pools the team-specific
estimates toward the model-based prediction.

p <- baseball_sample |>
group_by(team) |>
mutate(nonparametric = mean(salary)) |>
ungroup() |>
mutate(

fitted = predict(multilevel)
) |>
distinct(team, team_past_record, fitted, nonparametric) |>
ungroup() |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = nonparametric)) +
geom_abline(

intercept = fixef(multilevel)[1],
slope = fixef(multilevel)[2],
linetype = "dashed"

) +
geom_segment(

aes(y = nonparametric, yend = fitted),
arrow = arrow(length = unit(.05,"in"))

) +
geom_point(aes(y = nonparametric)) +
#ggrepel::geom_text_repel(aes(y = fitted, label = team), size = 2) +
theme_minimal() +
scale_y_continuous(
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name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_x_continuous(name = "Team Past Record: Proportion Wins in 2022") +
ggtitle("Multilevel model on a sample of 5 players per team",

subtitle = "Points are nonparametric sample mean estimates.\nArrow ends are multilevel model estimates.\nDashed line is an unregularized fixed effect.")
p

$2.5 million

$5.0 million

$7.5 million

$10.0 million

$12.5 million

0.4 0.5 0.6 0.7
Team Past Record: Proportion Wins in 2022

Te
am

 M
ea

n 
S

al
ar

y 
in

 2
02

3

Points are nonparametric sample mean estimates.
Arrow ends are multilevel model estimates.
Dashed line is an unregularized fixed effect.

Multilevel model on a sample of 5 players per team

The multilevel model only regularizes the team-specific estimates to the degree that they are
imprecise. If we repeat the entire process on a sample of 20 players per team, each team-specific
estimate becomes more precise and the overall amount of shrinkage is less.

bigger_sample <- baseball_population |>
group_by(team) |>
slice_sample(n = 20) |>
ungroup()

multilevel_big <- lmer(formula(multilevel), data = bigger_sample)
bigger_sample |>
group_by(team) |>
mutate(nonparametric = mean(salary)) |>
ungroup() |>
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mutate(
fitted = predict(multilevel_big)

) |>
distinct(team, team_past_record, fitted, nonparametric) |>
ungroup() |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = nonparametric)) +
geom_abline(

intercept = fixef(multilevel)[1],
slope = fixef(multilevel)[2],
linetype = "dashed"

) +
geom_segment(

aes(y = nonparametric, yend = fitted),
arrow = arrow(length = unit(.05,"in"))

) +
geom_point(aes(y = nonparametric)) +
#ggrepel::geom_text_repel(aes(y = fitted, label = team), size = 2) +
theme_minimal() +
scale_y_continuous(

name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

),
limits = layer_scales(p)$y$range$range

) +
scale_x_continuous(name = "Team Past Record: Proportion Wins in 2022") +
ggtitle("Multilevel model on a sample of 20 players per team",

subtitle = "Points are nonparametric sample mean estimates.\nArrow ends are multilevel model estimates.\nDashed line is an unregularized fixed effect.")
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Points are nonparametric sample mean estimates.
Arrow ends are multilevel model estimates.
Dashed line is an unregularized fixed effect.

Multilevel model on a sample of 20 players per team

Performance over repeated samples

We previously discussed how an OLS prediction that was linear in the past team record was
a biased estimator with low variance. The sample mean within each team was an unbiased
estimator with high variance. The multilevel model falls in between these two extremes.

many_sample_estimates_multilevel <- foreach(
repetition = 1:100, .combine = "c"

) %do% {
# Draw a sample from the population
baseball_sample <- baseball_population |>

group_by(team) |>
slice_sample(n = 5) |>
ungroup()

# Apply the estimator to the sample# Learn a model in the sample
multilevel <- lmer(

salary ~ team_past_record + (1 | team),
data = baseball_sample

)
# Predict for our target population
mutilevel_predicted <- dodgers_to_predict |>

mutate(predicted_salary = predict(multilevel, newdata = dodgers_to_predict))
# Average over the target population
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mutilevel_estimate <- mutilevel_predicted |>
summarize(mutilevel_estimate = mean(predicted_salary)) |>
pull(mutilevel_estimate)

# Return the estimate
return(mutilevel_estimate)

}
# Visualize
tibble(x = "OLS with\nlinear record", y = many_sample_estimates) |>
bind_rows(

tibble(x = "OLS with\nteam indicators", y = many_sample_estimates_categories)
) |>
bind_rows(

tibble(x = "Multilevel\nmodel", y = many_sample_estimates_multilevel)
) |>
ggplot(aes(x = x, y = y)) +
geom_jitter(width = .2, height = 0) +
scale_y_continuous(

name = "Dodger Mean Salary",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
theme_minimal() +
scale_x_discrete(

name = "Estimator"
) +
ggtitle(NULL, subtitle = "Each dot is an estimate in one sample from the population") +
geom_hline(yintercept = true_dodger_mean, linetype = "dashed") +
annotate(geom = "text", x = .4, y = true_dodger_mean, hjust = 0, vjust = .5, label = "Truth in\npopulation", size = 3)
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In math

Mathematically, a multilevel model is a maximum likelihood estimator. For our case, the
model assumes that the salary of player 𝑖 on team 𝑡 is assumed to be normally distributed
around the team mean salary 𝜇𝑡, with variance 𝜎2 which in our case is assumed to be the same
across teams.

𝑌𝑡𝑖 ∼ Normal (𝜇𝑡, 𝜎2)
The team-specific mean 𝜇𝑡 involves two components. First, this mean is assumed to be centered
at a linear prediction 𝛼 + 𝑋𝑡𝛽 where 𝑋𝑡 is the win-loss record of team 𝑡 in the previous year.
This is the value toward which team-specific estimates are regularized. Second, the mean for
the particular team 𝑖 is drawn from a normal distribution with standard deviation 𝜏2, which
is the standard deviation of the team-specific mean salary residuals across teams.

𝜇𝑡 ∼ Normal(𝛼 + 𝑋𝑡𝛽, 𝜏2)
By maximizing the log likelihood of the observed data under this model, one comes to max-
imum likelihood estimates of all of the unknown parameters. The 𝜇𝑡 estimates will partially
pool between two estimators,

1. the sample mean ̄𝑌𝑡 within team 𝑡
2. the linear model prediction ̂𝛼 + 𝑋𝑡 ̂𝛽
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where the weight on (1) will depend on the relative precision of this within-team estimate
and the weight (2) will depend on the relative precision of the between-team estimate. After
explaining ridge regression, we will return to a simplified case where the formula for the
multilevel model estimates allows further intuition building.

Ridge regression

While multilevel models are often approached from the standpoint of classical statistics, they
are very similar to another approach commonly approached from the standpoint of data sci-
ence: ridge regression.

Intuition

Consider our sample of 30 baseball teams with 5 players per team. We might want to fit a
linear regression model as follows,

𝑌𝑖𝑗 = 𝛼 + 𝛽𝑋𝑖 + 𝛾𝑖 + 𝜖𝑖𝑗

where 𝑌𝑖𝑗 is the salary of player 𝑖 on team 𝑗 and 𝑋𝑖 is the past win-loss record of that team.
In this model, 𝛾𝑖 is a team-specific deviation from the linear fit, which corrects for model
approximation error that will arise if particular teams have average salaries not well-captured
by the linear fit. The error term 𝜖𝑖𝑗 is the deviation for player 𝑗 from their own team’s average
salary.

The problem with this model is its high variance: with 30 teams, there are 30 different values
of 𝛾𝑖 to be estimated. And there are only 5 players per team! We might believe that 𝛾𝑖 values
will generally be small, so we might want to estimate by penalizing large values of 𝛾𝑖.

We can penalize large values of 𝛾𝑖 by an estimator written as it might be written in a data
science course:

{ ̂𝛼, ̂𝛽, ̂⃗𝛾} = arg min
𝛼,𝛽,𝛾⃗

[∑
𝑖

∑
𝑗

(𝑌𝑖𝑗 − (𝛼 + 𝛽𝑋𝑖 + 𝛾𝑖))
2 + 𝜆 ∑

𝑖
𝛾2

𝑖 ]

where the estimated values { ̂𝛼, ̂𝛽, ̂⃗𝛾} are chosen to minimize a loss function which is the sum
over the data of the squared prediction error plus a penalty on large values of 𝛾𝑖.

In code
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library(glmnet)

ridge <- glmnet(
x = model.matrix(~ -1 + team_past_record + team, data = baseball_sample),
y = baseball_sample$salary,
penalty.factor = c(0,rep(1,30)),
# Choose the ridge penalty (alpha = 0).
# Later, we will learn about the LASSO penalty (alpha = 1)
alpha = 0

)

We can visualize the ridge regression estimates just like the multilevel model estimates. Be-
cause the penalty applies to squared values of team deviations from the line, the points furthest
from the line are most strongly regularized toward the line.

baseball_sample |>
group_by(team) |>
mutate(nonparametric = mean(salary)) |>
ungroup() |>
mutate(

fitted = predict(
ridge,
s = ridge$lambda[50],
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
) |>
distinct(team, team_past_record, fitted, nonparametric) |>
ungroup() |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = nonparametric)) +
geom_abline(

intercept = coef(ridge, s = ridge$lambda[20])[1],
slope = coef(ridge, s = ridge$lambda[20])[2],
linetype = "dashed"

) +
geom_segment(

aes(y = nonparametric, yend = fitted),
arrow = arrow(length = unit(.05,"in"))

) +
geom_point(aes(y = nonparametric)) +
#ggrepel::geom_text_repel(aes(y = fitted, label = team), size = 2) +
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theme_minimal() +
scale_y_continuous(

name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_x_continuous(name = "Team Past Record: Proportion Wins in 2022") +
ggtitle("Ridge regression on a sample of 5 players per team",

subtitle = "Points are nonparametric sample mean estimates.\nArrow ends are ridge regression estimates.\nDashed line is the unregularized component of the model.")
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Points are nonparametric sample mean estimates.
Arrow ends are ridge regression estimates.
Dashed line is the unregularized component of the model.

Ridge regression on a sample of 5 players per team

The amount of regularization will depend on the chosen value of the penalty parameter 𝜆. To
the degree that 𝜆 is large, estimates will be more strongly pulled toward the regression line.
Below is a visualization at three values of 𝜆.

fitted <- predict(
ridge,
s = ridge$lambda[c(20,60,80)],
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
colnames(fitted) <- c("Large Lambda Value","Medium Lambda Value","Small Lambda Value")
baseball_sample |>
group_by(team) |>
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mutate(nonparametric = mean(salary)) |>
ungroup() |>
bind_cols(fitted) |>
select(team, team_past_record, nonparametric, contains("Lambda")) |>
pivot_longer(cols = contains('Lambda')) |>
distinct() |>
mutate(name = fct_rev(name)) |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = nonparametric), size = .8) +
geom_segment(

aes(y = nonparametric, yend = value),
arrow = arrow(length = unit(.04,"in"))

) +
facet_wrap(~name) +
#ggrepel::geom_text_repel(aes(y = fitted, label = team), size = 2) +
theme_minimal() +
scale_y_continuous(

name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_x_continuous(name = "Team Past Record: Proportion Wins in 2022") +
ggtitle("Ridge regression on a sample of 5 players per team",

subtitle = "Points are nonparametric sample mean estimates.\nArrow ends are ridge regression estimates.\nDashed line is the unregularized component of the model.")
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Points are nonparametric sample mean estimates.
Arrow ends are ridge regression estimates.
Dashed line is the unregularized component of the model.

Ridge regression on a sample of 5 players per team

Focusing on the prediction for the Dodgers, we can see how the estimate changes as a function
of the penalty parameter 𝜆.

fitted <- predict(
ridge,
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
dodgers_sample_mean <- baseball_sample |>
filter(team == "L.A. Dodgers") |>
summarize(salary = mean(salary)) |>
pull(salary)

ols_estimate <- predict(
lm(salary ~ team_past_record, data = baseball_sample),
newdata = baseball_sample |> filter(team == "L.A. Dodgers") |> slice_head(n = 1)

)
tibble(estimate = fitted[baseball_sample$team == "L.A. Dodgers",][1,],

lambda = ridge$lambda) |>
ggplot(aes(x = lambda, y = estimate)) +
geom_line() +
scale_y_continuous(

name = "Dodger Mean Salary Estimate",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

),
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expand = expansion(mult = .2)
) +
scale_x_continuous(

name = "Ridge Regression Penalty Term",
limits = c(0,1e8)

) +
annotate(

geom = "point", x = 0, y = dodgers_sample_mean
) +
annotate(geom = "segment", x = .85e7, xend = .2e7, y = dodgers_sample_mean,

arrow = arrow(length = unit(.05,"in"))) +
annotate(

geom = "text", x = 1e7, y = dodgers_sample_mean,
label = "Mean salary of 5 sampled Dodgers",
hjust = 0, size = 3

) +
geom_hline(yintercept = ols_estimate, linetype = "dashed") +
annotate(

geom = "text",
x = 0, y = ols_estimate,
label = "Dashed line = Prediction that does not allow any team-specific deviations",
vjust = -.8, size = 3, hjust = 0

) +
theme_minimal()

Warning: Removed 27 rows containing missing values or values outside the scale range
(`geom_line()`).

29



Mean salary of 5 sampled Dodgers

Dashed line = Prediction that does not allow any team−specific deviations

$3.0 million

$4.0 million

$5.0 million

$6.0 million

0.0e+00 2.5e+07 5.0e+07 7.5e+07 1.0e+08
Ridge Regression Penalty Term

D
od

ge
r 

M
ea

n 
S

al
ar

y 
E

st
im

at
e

We will discuss how to choose the value of lambda more in two weeks when we discuss data-
driven selection of an estimator.

Performance over repeated samples

The ridge regression estimator has intuitive performance across repeated samples: the variance
of the estimates decreases as the value of the penalty parameter 𝜆 rises. The biase of the
estimates also increases as the value of 𝜆 increases. The optimal value of 𝜆 is a problem-
specific question that requires one to balance the tradeoff between bias and variance.

many_sample_estimates_ridge <- foreach(
repetition = 1:100, .combine = "rbind"

) %do% {
# Draw a sample from the population
baseball_sample <- baseball_population |>

group_by(team) |>
slice_sample(n = 5) |>
ungroup()

# Apply the estimator to the sample# Learn a model in the sample
ridge <- glmnet(

x = model.matrix(~ -1 + team_past_record + team, data = baseball_sample),
y = baseball_sample$salary,
penalty.factor = c(0,rep(1,30)),
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alpha = 0
)
# Predict for our target population
fitted <- predict(

ridge,
s = ridge$lambda[c(20,60,80)],
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
colnames(fitted) <- c("Large Lambda Value","Medium Lambda Value","Small Lambda Value")

as_tibble(
as.matrix(fitted[baseball_sample$team == "L.A. Dodgers",][1,]),
rownames = "estimator"

) |>
rename(estimate = V1)

}
# Visualize
many_sample_estimates_ridge |>
mutate(estimator = fct_rev(estimator)) |>
ggplot(aes(x = estimator, y = estimate)) +
geom_jitter(width = .2, height = 0) +
scale_y_continuous(

name = "Dodger Mean Salary",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
theme_minimal() +
scale_x_discrete(

name = "Estimator"
) +
ggtitle(NULL, subtitle = "Each dot is an estimate in one sample from the population") +
geom_hline(yintercept = true_dodger_mean, linetype = "dashed") +
annotate(geom = "text", x = .4, y = true_dodger_mean, hjust = 0, vjust = .5, label = "Truth in\npopulation", size = 3)
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Connections: Multilevel model and ridge regression

Multilevel models and ridge regression are closely connected, and they can yield mathemati-
cally equivalent estimates in special cases. Consider again the multilevel model for the salary
𝑌𝑡𝑖 of player 𝑖 on team 𝑡.

𝑌𝑡𝑖 ∼ Normal(𝜇𝑡, 𝜎2)
𝜇𝑡 ∼ Normal(𝜇0, 𝜏2)

For simplicity, suppose we already have estimates ̂𝜇0, ̂𝜏2, and 𝜎̂2. One can show that the
multilevel model estimates of 𝜇𝑡 are:

̂𝜇Multilevel
𝑡 = ∑𝑖 𝑌𝑡𝑖 + 𝜎̂2

̂𝜏2 ̂𝜇0
𝑛𝑡 + 𝜎̂2

̂𝜏2

This formula can be interpreted as analogous to a sample mean, but with some added obser-
vations. The first part of the numerator and denominator corresponds to a sample mean: the
sum ∑𝑖 𝑌𝑡𝑖 of salaries of all sampled players in team 𝑡 in the numerator and the number of such
players 𝑛𝑡 in the denominator. The right side of the numerator and denominator correspond
to pseudo-observations. It is as though in addition to the sampled players, we also saw 𝜎̂2

̂𝜏2

additional players with exactly the overall baseball mean salary estimate ̂𝜇0. This part of the
formula partially pools the team-specific mean toward this overall mean. Partial pooling is
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greater to the degree that there is small within-team variance (small 𝜎2) or large across-team
variance (large ̂𝜏2).

Next, we consider a ridge regression estimator that minimizes an objective function where ̂𝜇0
is an unpenalized estimate for the baseball-wide mean salary.2

̂⃗𝜇
Ridge

= arg min
𝜇⃗

∑
𝑡

∑
𝑖

(𝑌𝑖𝑡 − 𝜇𝑡)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sum of Squared Error

+ 𝜆 ∑
𝑡

(𝜇𝑡 − ̂𝜇0)2

⏟⏟⏟⏟⏟⏟⏟
Penalty

We can gain some additional intuition for this estimate by rearranging to pull the penalty into
the main term.

̂⃗𝜇
Ridge

= arg min
𝜇⃗

∑
𝑡

(∑
𝑖

(𝑌𝑖𝑡 − 𝜇𝑡)
2 + 𝜆 ( ̂𝜇0 − 𝜇𝑡)

2)

The first part of this term is the sum over observed squared errors within team 𝑡, ∑𝑖 (𝑌𝑖𝑡 − 𝜇𝑡)
2.

The second part is as though we had observed an additional 𝜆 cases within team 𝑡 with an
outcome value 𝜇0 equal to the baseball-wide mean. With this intuition, the ridge regression
estimator becomes

̂𝜇Ridge
𝑡 = ∑𝑖 𝑌𝑖𝑡 + 𝜆 ̂𝜇0

𝑛𝑡 + 𝜆
which is the same as the multilevel model estimator in the special case when 𝜆 = 𝜎̂2

̂𝜏2 . Multilevel
models and ridge regression are actually accomplishing the same thing!

Below, we use code to check that these two give the same thing. We first fit a multilevel
model,

multilevel <- lmer(salary ~ 1 + (1 | team), data = baseball_sample)

Then we make predictions,

yhat_multilevel <- baseball_sample |>
mutate(yhat_multilevel = predict(multilevel)) |>
distinct(team, yhat_multilevel)

and extract the implied value of 𝜆 for an equivalent ridge regression (from the math above).

2While we write out 𝜇̂0, algorithmic implementations of ridge regression often mean-center 𝑌 before applying
the algorithm which is equivalent to having an unpenalized 𝜇̂0.
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lambda_equivalent <- as_tibble(VarCorr(multilevel)) |>
select(grp, vcov) |>
pivot_wider(names_from = "grp", values_from = "vcov") |>
mutate(lambda_equivalent = Residual / team) |>
pull(lambda_equivalent)

Now we estimate ridge regression with that 𝜆 value. Because glmnet internally rescales vari-
ables, it is difficult to carry out this check with glmnet. Instead, we will write our own ridge
regression estimator. We first define our predictor matrix X and a mean-centered outcome
vector y_centered. The reason to mean-center the outcome is to allow an unpenalized grand
mean (𝜇0 in the math above). We will add this value back to predictions later.

X <- model.matrix(~ -1 + team, data = baseball_sample)
y_centered <- baseball_sample$salary - mean(baseball_sample$salary)

The ridge regression estimator can be written in matrix form as follows:

𝑌 − ̂𝜇0 = X ⃗𝛽 + 𝜖

with ̂⃗𝛽Ridge = (X′X + diag(𝜆))−1X′ ⃗𝑌 . The code below estimates ⃗𝛽

beta_ridge <- solve(
t(X) %*% X + diag(rep(lambda_equivalent,ncol(X))),
t(X) %*% y_centered

)

Because there is one 𝛽 value for each team, we convert to predicted values for each team by
adding the grand mean to the estimated coefficients.

yhat_ridge <- beta_ridge + mean(baseball_sample$salary)

Finally, we create a tibble with both the ridge regression and multilevel model estimates.

both_estimators <- as_tibble(rownames_to_column(data.frame(yhat_ridge))) |>
rename(team = rowname) |>
mutate(team = str_remove(team,"team")) |>
left_join(yhat_multilevel, by = join_by(team))

We can confirm in code that the two predictions are numerically equal.
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both_estimators |>
# remove names; it is ok if names are unequal
mutate_all(unname) |>
# summarize whether the two columns are equal
summarize(numerically_equal = all.equal(yhat_ridge, yhat_multilevel))

# A tibble: 1 x 1
numerically_equal
<lgl>

1 TRUE

We produce a plot with one point for each team, with ridge regression predictions on the
𝑥-axis and multilevel model predictions on the 𝑦-axis. We can see that these two estimators
are equivalent.

both_estimators |>
ggplot(aes(x = yhat_ridge, y = yhat_multilevel, label = team)) +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
scale_x_continuous(

name = "Ridge Regression",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_y_continuous(

name = "Multilevel Model",,
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
ggtitle("Ridge regression and multilevel models can yield\nequal estimates for the mean salary on each team") +
theme_minimal()
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Ridge regression and multilevel models can yield
equal estimates for the mean salary on each team

The equivalency of ridge regression and multilevel models may be surprising. Ridge regression
is often motivated from a loss function (squared error + penalty), using terms that are common
in data science and machine learning. Multilevel models are often motivated from sociological
examples where units are clustered in groups, with terminology more common in statistics.
Yet the two are mathematically related. An important difference is that multilevel models
learn the amount of regularization from the data, whereas ridge regression needs an additional
step to learn the penalty parameter (to be discussed in a future class session on data-driven
estimator selection).

LASSO regression

LASSO regression is just like ridge regression except for one key difference: instead of pe-
nalizing the sum of squared coefficients, LASSO penalizes the sum of the absolute value of
coefficients. As we will see, this change means that some parameters become regularized all
the way to zero so that some terms drop out of the model completely.

As with ridge regression, our outcome model is

𝑌𝑡𝑖 = 𝛼 + 𝛽𝑋𝑡 + 𝛾𝑡 + 𝜖𝑡𝑖

where 𝑌𝑡𝑖 is the salary of player 𝑖 on team 𝑡 and 𝑋𝑡 is the past win-loss record of that team.
In this model, 𝛾𝑡 is a team-specific deviation from the linear fit, which corrects for model
approximation error that will arise if particular teams have average salaries not well-captured
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by the linear fit. The error term 𝜖𝑡𝑖 is the deviation for player 𝑖 from their own team’s average
salary.

To solve the high-variance estimates of 𝛾𝑡, LASSO regression uses a different penalty term in
its loss function:

{ ̂𝛼, ̂𝛽, ̂⃗𝛾} = arg min
𝛼,𝛽,𝛾⃗

[∑
𝑡

∑
𝑖

(𝑌𝑡𝑖 − (𝛼 + 𝛽𝑋𝑡 + 𝛾𝑡))
2 + 𝜆 ∑

𝑡
|𝛾𝑡|]

where 𝛾2
𝑡 from the ridge regression penalty has been replaced by the absolute value |𝛾𝑡|. We

will first apply this in code and then see how it changes the performance of the estimator.

In code

library(glmnet)

lasso <- glmnet(
x = model.matrix(~ -1 + team_past_record + team, data = baseball_sample),
y = baseball_sample$salary,
penalty.factor = c(0,rep(1,30)),
# Choose LASSO (alpha = 1) instead of ridge (alpha = 0)
alpha = 1

)

Visualizing the estimates, we see behavior similar to what we have previously seen from mul-
tilevel models and ridge regression. All estimates are pulled toward a linear regression fit.
There are two key differences, however.

First, the previous estimators most strongly pulled the large deviations toward the linear fit.
The LASSO estimates pull all parameter estimates toward the linear fit to a similar degree,
regardless of their size. This is because the LASSO estimates penalize the absolute value of 𝛾𝑖
instead of the squared value of 𝛾𝑖.

Second, the multilevel and ridge estimates never pulled any of the estimates all the way to
the line; instead, the estimates asymptoted toward the line as the penalty parameter grew. In
LASSO, some estimates are pulled all the way to the line.

baseball_sample |>
group_by(team) |>
mutate(nonparametric = mean(salary)) |>
ungroup() |>
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mutate(
fitted = predict(
lasso,
s = lasso$lambda[20],
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
) |>
distinct(team, team_past_record, fitted, nonparametric) |>
ungroup() |>
ggplot(aes(x = team_past_record)) +
geom_point(aes(y = nonparametric)) +
geom_abline(

intercept = coef(lasso, s = lasso$lambda[20])[1],
slope = coef(lasso, s = lasso$lambda[20])[2],
linetype = "dashed"

) +
geom_segment(

aes(y = nonparametric, yend = fitted),
arrow = arrow(length = unit(.05,"in"))

) +
geom_point(aes(y = nonparametric)) +
#ggrepel::geom_text_repel(aes(y = fitted, label = team), size = 2) +
theme_minimal() +
scale_y_continuous(

name = "Team Mean Salary in 2023",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
scale_x_continuous(name = "Team Past Record: Proportion Wins in 2022") +
ggtitle("LASSO regression on a sample of 5 players per team",

subtitle = "Points are nonparametric sample mean estimates.\nArrow ends are ridge regression estimates.\nDashed line is the unregularized component of the model.")
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LASSO regression on a sample of 5 players per team

Focusing on the prediction for the Dodgers, we can see how the estimate changes as a function
of the penalty parameter 𝜆. At a very small penalty, the estimate is approximately the same
as the mean among the 5 sampled Dodger players. As the penalty parameter 𝜆 gets larger,
the estimates move around. They generally move toward zero, but not always: as some other
team-specific deviations are pulled to zero, the unregularized intercept and slope on team past
record move around in response. Ultimately, the penalty becomes so large that the Dodger
estimate is regularized all the way to the estimate we would get in a model with no team-specific
deviations.

fitted <- predict(
lasso,
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
dodgers_sample_mean <- baseball_sample |>
filter(team == "L.A. Dodgers") |>
summarize(salary = mean(salary)) |>
pull(salary)

ols_estimate <- predict(
lm(salary ~ team_past_record, data = baseball_sample),
newdata = baseball_sample |> filter(team == "L.A. Dodgers") |> slice_head(n = 1)

)
tibble(estimate = fitted[baseball_sample$team == "L.A. Dodgers",][1,],

lambda = lasso$lambda) |>
ggplot(aes(x = lambda, y = estimate)) +
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geom_line() +
scale_y_continuous(

name = "Dodger Mean Salary Estimate",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

),
expand = expansion(mult = .2)

) +
scale_x_continuous(

name = "LASSO Regression Penalty Term",
limits = c(0,2.5e6)

) +
annotate(

geom = "point", x = 0, y = dodgers_sample_mean
) +
annotate(geom = "segment", x = 2.5e5, xend = 1e5, y = dodgers_sample_mean,

arrow = arrow(length = unit(.05,"in"))) +
annotate(

geom = "text", x = 3e5, y = dodgers_sample_mean,
label = "Mean salary of 5 sampled Dodgers",
hjust = 0, size = 3

) +
geom_hline(yintercept = ols_estimate, linetype = "dashed") +
annotate(

geom = "text",
x = 0, y = ols_estimate,
label = "Dashed line = Prediction that does not allow any team-specific deviations",
vjust = -.8, size = 3, hjust = 0

) +
theme_minimal()
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As with ridge regression, we will discuss how to choose the value of lambda more in two weeks
when we discuss data-driven selection of an estimator.

Performance over repeated samples

Similar to the ridge regression estimator, we can visualize the performance of the LASSO
regression estimator across repeated samples from the population.

many_sample_estimates_lasso <- foreach(
repetition = 1:100, .combine = "rbind"

) %do% {
# Draw a sample from the population
baseball_sample <- baseball_population |>

group_by(team) |>
slice_sample(n = 5) |>
ungroup()

# Apply the estimator to the sample# Learn a model in the sample
lasso <- glmnet(

x = model.matrix(~ -1 + team_past_record + team, data = baseball_sample),
y = baseball_sample$salary,
penalty.factor = c(0,rep(1,30)),
alpha = 1

)
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# Predict for our target population
fitted <- predict(

lasso,
s = lasso$lambda[c(15,30,45)],
newx = model.matrix(~-1 + team_past_record + team, data = baseball_sample)

)
colnames(fitted) <- c("Large Lambda Value","Medium Lambda Value","Small Lambda Value")

as_tibble(
as.matrix(fitted[baseball_sample$team == "L.A. Dodgers",][1,]),
rownames = "estimator"

) |>
rename(estimate = V1)

}
# Visualize
many_sample_estimates_lasso |>
mutate(estimator = fct_rev(estimator)) |>
ggplot(aes(x = estimator, y = estimate)) +
geom_jitter(width = .2, height = 0) +
scale_y_continuous(

name = "Dodger Mean Salary",
labels = label_currency(
scale = 1e-6, accuracy = .1, suffix = " million"

)
) +
theme_minimal() +
scale_x_discrete(

name = "Estimator"
) +
ggtitle(NULL, subtitle = "Each dot is an estimate in one sample from the population") +
geom_hline(yintercept = true_dodger_mean, linetype = "dashed") +
annotate(geom = "text", x = .4, y = true_dodger_mean, hjust = 0, vjust = .5, label = "Truth in\npopulation", size = 3)
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Trees

To read more on this topic, see Ch 8.4 of Efron & Hastie (2016)

Penalized regression performs well when the the response surface 𝐸(𝑌 ∣ 𝑋⃗) is well-
approximated by the functional form of a particular assumed model. In some settings,
however, the response surface may be more complex, with nonlinearities and interaction
terms that the researcher may not know about in advance. In these settings, one might desire
an estimator that adaptively learns the functional form from the data.

A simulation to illustrate trees

As an example, the figure below presents some hypothetical data with a binary predictor 𝑍, a
numeric predictor 𝑋, and a numeric outcome 𝑌 .

true_conditional_mean <- tibble(z = F, x = seq(0,1,.001)) |>
bind_rows(tibble(z = T, x = seq(0,1,.001))) |>
mutate(mu = z * plogis(10 * (x - .5)))

simulate <- function(sample_size) {
tibble(z = F, x = seq(0,1,.001)) |>

bind_rows(tibble(z = T, x = seq(0,1,.001))) |>
mutate(mu = z * plogis(10 * (x - .5))) |>
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slice_sample(n = sample_size, replace = T) |>
mutate(y = mu + rnorm(n(), sd = .1))

}
simulated_data <- simulate(1000)
p_no_points <- true_conditional_mean |>
ggplot(aes(x = x, color = z, y = mu)) +
geom_line(linetype = "dashed", size = 1.2) +
labs(

x = "Numeric Predictor X",
y = "Numeric Outcome Y",
color = "Binary Predictor Z"

) +
theme_bw()

p <- p_no_points +
geom_point(data = simulated_data, aes(y = y), size = .2, alpha = .3)

p
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If we tried to approximate these conditional means with an additive linear model,

̂𝐸Linear(𝑌 ∣ 𝑋, 𝑍) = ̂𝛼 + ̂𝛽𝑋 + ̂𝛾𝑍

then the model approximation error would be very large.

44



best_linear_fit <- lm(mu ~ x + z, data = true_conditional_mean)
p +
geom_line(

data = true_conditional_mean |>
mutate(mu = predict(best_linear_fit))

) +
theme_bw() +
ggtitle("An additive linear model (solid lines) poorly approximates\nthe true conditional mean function (dashed lines)")
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An additive linear model (solid lines) poorly approximates
the true conditional mean function (dashed lines)

Trees repeatedly split the data

Regression trees begin from a radically different place. With no model at all, suppose we were
to split the sample into two subgroups. For example, we might choose to split on 𝑍 and say
that all units with z = TRUE are one subgroup while all units with z = FALSE are another
subgroup. Or we might split on 𝑋 and say that all units with x <= .23 are one subgroup and
all units with x > .23 are another subgroup. After choosing a way to split the dataset into
two subgroups, we would then make a prediction rule: for each unit, predict the mean value
of all sampled units who fall in their subgroup. This rule would produce only two predicted
values: one prediction per resulting subgroup.

If you were designing an algorithm to predict this way, how would you choose to define the
split?
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In regression trees to estimate conditional means, the split is often chosen to minimize the
resulting sum of squared prediction errors. Suppose we choose this rule. Suppose we consider
splitting on 𝑋 being above or below each decile of its empirical distribution. Suppose we
consider splitting on 𝑍 being FALSE or TRUE. The graph below shows the sum of squared
prediction error resulting from each rule.

x_split_candidates <- quantile(simulated_data$x, seq(.1,.9,.1))
z_split_candidates <- .5
by_z <- simulated_data |>
group_by(z) |>
mutate(yhat = mean(y)) |>
ungroup() |>
summarize(sum_squared_error = sum((yhat - y) ^ 2))

by_x <- foreach(x_split = x_split_candidates, .combine = "rbind") %do% {
simulated_data |>

mutate(left = x <= x_split) |>
group_by(left) |>
mutate(yhat = mean(y)) |>
ungroup() |>
summarize(sum_squared_error = sum((yhat - y) ^ 2)) |>
mutate(x_split = x_split)

}

by_x |>
mutate(split = "If Splitting on X") |>
rename(split_value = x_split) |>
bind_rows(

by_z |>
mutate(split = "If Splitting on Z") |>
mutate(split_value = .5)

) |>
ggplot(aes(x = split_value, y = sum_squared_error)) +
geom_point() +
geom_line() +
facet_wrap(~split) +
labs(

x = "Value on Which to Split into Two Subgroups",
y = "Resulting Sum of Squared Error"

) +
theme_bw()
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With the results above, we would choose to split on 𝑍, creating a subpopulation with 𝑍 ≤ .5
and a subgroup with 𝑍 ≥ .5. Our prediction function would look like this. Our split very
well approximates the true conditional mean function when Z = FALSE, but is still a poor
approximator when Z = TRUE.

p +
geom_line(

data = simulated_data |>
group_by(z) |>
mutate(mu = mean(y))

) +
ggtitle("Solid lines represent predicted values\nafter one split on Z")
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What if we make a second split? A regression tree repeats the process and considers making
a further split within each subpopulation. The graph below shows the sum of squared error
in the each subpopulation of Z when further split at various candidate values of X.

# Split 2: After splitting by Z, only X remains on which to split
left_side <- simulated_data |> filter(!z)
right_side <- simulated_data |> filter(z)

left_split_candidates <- quantile(left_side$x, seq(.1,.9,.1))
right_split_candidates <- quantile(right_side$x, seq(.1,.9,.1))

left_split_results <- foreach(x_split = left_split_candidates, .combine = "rbind") %do% {
left_side |>

mutate(left = x <= x_split) |>
group_by(z,left) |>
mutate(yhat = mean(y)) |>
ungroup() |>
summarize(sum_squared_error = sum((yhat - y) ^ 2)) |>
mutate(x_split = x_split)

} |>
mutate(chosen = sum_squared_error == min(sum_squared_error))

right_split_results <- foreach(x_split = right_split_candidates, .combine = "rbind") %do% {
right_side |>
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mutate(left = x <= x_split) |>
group_by(z,left) |>
mutate(yhat = mean(y)) |>
ungroup() |>
summarize(sum_squared_error = sum((yhat - y) ^ 2)) |>
mutate(x_split = x_split)

} |>
mutate(chosen = sum_squared_error == min(sum_squared_error))

split2_results <- left_split_results |> mutate(split1 = "Among Z = FALSE") |>
bind_rows(right_split_results |> mutate(split1 = "Among Z = TRUE"))

split2_results |>
ggplot(aes(x = x_split, y = sum_squared_error)) +
geom_line(color = 'gray') +
geom_point(aes(color = chosen)) +
scale_color_manual(values = c("gray","blue")) +
facet_wrap(~split1) +
theme_bw() +
labs(

x = "X Value on Which to Split into Two Subgroups",
y = "Resulting Sum of Squared Error"

)
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The resulting prediction function is a step function that begins to more closely approximate
the truth.

split2_for_graph <- split2_results |>
filter(chosen) |>
mutate(z = as.logical(str_remove(split1,"Among Z = "))) |>
select(z, x_split) |>
right_join(simulated_data, by = join_by(z)) |>
mutate(x_left = x <= x_split) |>
group_by(z, x_left) |>
mutate(yhat = mean(y))

p +
geom_line(

data = split2_for_graph,
aes(y = yhat)

) +
ggtitle("Solid lines represent predicted values\nafter two splits on (Z,X)")
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Having made one and then two splits, the figure below shows what happens when each subgroup
is the created by 4 sequential splits of the data.
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library(rpart)
rpart.out <- rpart(
y ~ x + z, data = simulated_data,
control = rpart.control(minsplit = 2, cp = 0, maxdepth = 4)

)
p +
geom_step(

data = true_conditional_mean |>
mutate(mu_hat = predict(rpart.out, newdata = true_conditional_mean)),

aes(y = mu_hat)
) +
ggtitle("Prediction from regression tree grown to depth 4")
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Prediction from regression tree grown to depth 4

This prediction function is called a regression tree because of how it looks when visualized a
different way. One begins with a full sample which then “branches” into a left and right part,
which further “branch” off in subsequent splits. The terminal nodes of the tree—subgroups
defined by all prior splits—are referred to as “leaves.” Below is the prediction function from
above, visualized as a tree. This visualization is made possible with the rpart.plot package
which we practice further down the page.

library(rpart.plot)
rpart.plot::rpart.plot(rpart.out)
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Your turn: Fit a regression tree

Using the rpart package, fit a regression tree like the one above. First, load the package.

library(rpart)

Then use this code to simulate data. If you are a Stata user, download this simulated data
file from the website.

simulate <- function(sample_size) {
tibble(z = F, x = seq(0,1,.001)) |>

bind_rows(tibble(z = T, x = seq(0,1,.001))) |>
mutate(mu = z * plogis(10 * (x - .5))) |>
slice_sample(n = sample_size, replace = T) |>
mutate(y = mu + rnorm(n(), sd = .1))

}
simulated_data <- simulate(1000)

Use the rpart function to grow a tree.

rpart.out <- rpart(y ~ x + z, data = simulated_data)

Finally, we can define a series of predictor values at which to make predictions,

to_predict <- tibble(z = F, x = seq(0,1,.001)) |>
bind_rows(tibble(z = T, x = seq(0,1,.001)))
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and then make predictions

predicted <- predict(rpart.out, newdata = to_predict)

and visualize in a plot.

to_predict |>
mutate(yhat = predicted) |>
ggplot(aes(x = x, y = yhat, color = z)) +
geom_step()
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When you succeed, there are a few things you can try:

• Visualize the tree using the rpart.plot() function applied to your rpart.out object
• Attempt a regression tree using the baseball_population.csv data
• Try different specifications of the tuning parameters. See the control argument of

rpart, explained at ?rpart.control. To produce a model with depth 4, we previously
used the argument control = rpart.control(minsplit = 2, cp = 0, maxdepth =
4).

Choosing the depth of the tree

How deep should one make a tree? Recall that the depth of the tree is the number of sequential
splits that define a leaf. The figure below shows relatively shallow trees (depth = 2) and
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relatively deep trees (depth = 4) learned over repeated samples. What do you notice about
performance with each choice?

estimator <- function(maxdepth) {
foreach(rep = 1:3, .combine = "rbind") %do% {

this_sample <- simulate(100)
rpart.out <- rpart(y ~ x + z, data = this_sample, control = rpart.control(minsplit = 2, cp = 0, maxdepth = maxdepth))
true_conditional_mean |>
mutate(yhat = predict(rpart.out, newdata = true_conditional_mean),

maxdepth = maxdepth,
rep = rep)

}
}
results <- foreach(maxdepth_value = c(2,5), .combine = "rbind") %do% estimator(maxdepth = maxdepth_value)
p_no_points +
geom_line(

data = results |> mutate(maxdepth = case_when(maxdepth == 2 ~ "Shallow Trees\nDepth = 2", maxdepth == 5 ~ "Deep Trees\nDepth = 5")),
aes(group = interaction(z,rep), y = yhat)

) +
facet_wrap(

~maxdepth
)
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Shallow trees yield predictions that tend to be more biased because the terminal nodes are
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large. At the far right when z = TRUE and x is large, the predictions from the shallow trees
are systematically lower than the true conditional mean.

Deep trees yield predictions that tend to be high variance because the terminal nodes are small.
While the flexibility of deep trees yields predictions that are less biased, the high variance can
make deep trees poor predictors.

The balance between shallow and deep trees can be chosen by various rules of thumb or out-of-
sample performance metrics, many of which are built into functions like rpart. Another way
out is to move beyond trees to forests, which involve a simple extension that yields substantial
improvements in performance.

Forests

To read more on this topic, see Ch 17.1 of Efron & Hastie (2016)

We saw previously that a deep tree is a highly flexible learner, but one that may have poor
predictive performance due to its high sampling variance. Random forests (Breiman 2001)
resolve this problem in a simple but powerful way: reduce the variance by averaging the
predictions from many trees. The forest is the average of the trees.

If one simply estimated a regression tree many times on the same data, every tree would be
the same. Instead, each time a random forest grows a tree it proceeds by:

1) bootstrap a sample 𝑛 of the 𝑛 observations chosen with replacement
2) randomly sample some number 𝑚 of the variables to consider for splitting

There is an art to selection of the tuning parameter 𝑚, as well as the parameters of the tree-
growing algorithm. But most packages can select these tuning parameters automatically. The
more trees you grow, the less the forest-based predictions will be sensitive to the stochastic
variability that comes from the random sampling of data for each tree.

Illustration with bagged forest

For illustration, we will first consider a simple version of random forest that is a bagging
estimator: all predictors are included in every tree and variance is created through bagging,
or bootstrap aggregating. The code below builds intuition, and the code later using the
regression_forest function from the grf package is one way we would actually recommend
learning a forest in practice.
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tree_estimates <- foreach(tree_index = 1:100, .combine = "rbind") %do% {
# Draw a bootstrap sample of the data
simulated_data_star <- simulated_data |>

slice_sample(prop = 1, replace = T)
# Learn the tree
rpart.out <- rpart(

y ~ x + z, data = simulated_data_star,
# Set tuning parameters to grow a deep tree
control = rpart.control(minsplit = 2, cp = 0, maxdepth = 4)

)
# Define data to predict
to_predict <- tibble(z = F, x = seq(0,1,.001)) |>

bind_rows(tibble(z = T, x = seq(0,1,.001)))
# Make predictions
predicted <- to_predict |>

mutate(
yhat = predict(rpart.out, newdata = to_predict),
tree_index = tree_index

)
return(predicted)

}

We can then aggregate the tree estimates into a forest prediction by averaging over trees.

forest_estimate <- tree_estimates |>
group_by(z,x) |>
summarize(yhat = mean(yhat), .groups = "drop")

The forest is very good at approximating the true conditional mean.

p_no_points +
geom_line(

data = forest_estimate,
aes(y = yhat)

) +
ggtitle("Solid lines are forest predictions.\nDashed lines are the true conditional mean.")
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Your turn: A random forest with grf

In practice, it is helpful to work with a function that can choose the tuning parameters of the
forest for you. One such function is the regression_forest() function in the grf package.

library(grf)

To illustrate its use, we first produce a matrix X of predictors and a vector Y of outcome
values.

X <- model.matrix(~ x + z, data = simulated_data)
Y <- simulated_data |> pull(y)

We then estimate the forest with the regression_forest() function, here using the
tune.parameters = "all" argument to allow automated tuning of all parameters.

forest <- regression_forest(
X = X, Y = Y, tune.parameters = "all"

)

We can extract one tree from the forest with the get_tree() function and then visualize with
the plot() function.
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first_tree <- get_tree(forest, index = 1)
plot(first_tree)

To predict in a new dataset requires a new X matrix,

to_predict <- tibble(z = F, x = seq(0,1,.001)) |>
bind_rows(tibble(z = T, x = seq(0,1,.001)))

X_to_predict <- model.matrix(~ x + z, data = to_predict)

which can then be used to make predictions.

forest_predicted <- to_predict |>
mutate(

yhat = predict(forest, newdata = X_to_predict) |>
pull(predictions)

)

When we visualize, we see that the forest from the package is also a good approximator of
the conditional mean function. It is possible that the bias of this estimated forest arises from
tuning parameters that did not grow sufficiently deep trees.

p_no_points +
geom_line(

data = forest_predicted,
aes(y = yhat)

) +
ggtitle("Solid lines are grf::regression_forest() predictions.\nDashed lines are the true conditional mean.")
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Once you have learned a forest yourself, you might try a regression forest using the
baseball_population.csv data or another dataset of your choosing.

Forests as adaptive nearest neighbors

A regression tree can be interpreted as an adaptive nearest-neighbor estimator: the prediction
at predictor value ⃗𝑥 is the average outcome of all its neighbors, where neighbors are defined
as all sampled data points that fall in the same leaf as ⃗𝑥. The estimator is adaptive because
the definition of the neighborhood around ⃗𝑥 was learned from the data.

Random forests can likewise be interpreted as weighted adaptive nearest-neighbor estimators.
For each unit 𝑖, the predicted value is the average outcome of all other units where each unit 𝑗
is weighted by the frequency with which it falls in the same leaf as unit 𝑖. Seeing forest-based
predictions as a weighted average of other units’ outcomes is a powerful perspective that has
led to new advances in forests for uses that go beyond standard regression (Athey, Tibshirani,
& Wager 2019).

Gradient boosted trees

To read more on this topic, see Ch 17.2 of Efron & Hastie (2016)

Gradient boosted trees are similar to a random forest in that the result is an average of trees. A
key difference is how the trees are produced. In a random forest, the trees are all independent
prediction functions learned in parallel. In boosting, the trees are learned sequentially, with
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each tree correcting the errors of preceding trees. More precisely, the algorithm begins by
predicting the sample mean for all observations and defining residuals as the difference between
the true outcome 𝑌 and the predicted value. Then the algorithm estimates a regression tree
to model the residuals. It adds a regularized version of the predicted residuals to the predicted
value, then calculates residuals and fits a new tree to predict the new residuals. Over a series
of rounds, the predictions become sequentially closer to the truth, as visualized below.

library(xgboost)
xgboost_illustration <- foreach(round = 1:6, .combine = "rbind") %do% {
xgboost.out <- xgboost(

data = model.matrix(~ x + z, data = simulated_data),
label = simulated_data |> pull(y),
nrounds = round

)
to_predict |>

mutate(yhat = predict(xgboost.out, newdata = X_to_predict),
round = paste("After",round,ifelse(round == 1, "round", "rounds"),"of boosting"))

}
p_no_points +
geom_line(data = xgboost_illustration,

aes(y = yhat)) +
facet_wrap(~round) +
ggtitle("Solid lines are xgboost::xgboost() predictions.\nDashed lines are the true conditional mean.")
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A difficulty in boosting is knowing when to stop: the predictions improve over time but
ultimately will begin to overfit. While more trees is always better in a random forest, the
same is not true of boosting.

To learn more about boosting in math, we recommend Ch 17.2 of Efron & Hastie (2016). To
try boosting, you can install the xgboost package in R and follow the code below.

library(xgboost)

To fit a boosting model, first define a predictor matrix and an outcome vector.

X <- model.matrix(~ x + z, data = simulated_data)
Y <- simulated_data |> pull(y)

The code below uses these data to carry out 10 rounds of boosting (recall that the number of
rounds is a key tuning parameter, and 10 is only chosen for convenience).

xgboost.out <- xgboost(
data = model.matrix(~ x + z, data = simulated_data),
label = simulated_data |> pull(y),
nrounds = 10

)

Finally, we can define new data at which to predict

to_predict <- tibble(z = F, x = seq(0,1,.001)) |>
bind_rows(tibble(z = T, x = seq(0,1,.001)))

X_to_predict <- model.matrix(~ x + z, data = to_predict)

and then produce predicted values.

xgboost_predicted <- to_predict |>
mutate(yhat = predict(xgboost.out, newdata = X_to_predict))

Visualizing the result, we can see that boosting performed well in our simulated example.

p_no_points +
geom_line(

data = xgboost_predicted,
aes(y = yhat)

) +
ggtitle("Solid lines are xgboost::xgboost() predictions.\nDashed lines are the true conditional mean.")
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Closing thoughts

Algorithms for prediction are often powerful tools from data science. Because they are ̂𝑌
tools, their application in social science requires us to ask questions involving ̂𝑌 . One such
category of questions that have been the focus of this page are questions about conditional
means. Questions about conditional means are ̂𝑌 questions because the conditional mean
𝐸(𝑌 ∣ 𝑋⃗ = ⃗𝑥) would be the best possible prediction of 𝑌 given 𝑋⃗ = ⃗𝑥 when “best” is
defined by squared error loss. We have therefore focused on algorithms for prediction that
seek to minimize the sum of squared errors, since these algorithms may often be useful in
social science as tools to estimate conditional means.
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