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The course so far has focused on descriptive claims. For example, we have estimated the
average value of an outcome in the population, or among population subgroups. This lecture
pivots to causal claims: what would happen if a population were exposed to a hypothetical
intervention.

Fundamental problem of causal inference

Health professionals often advise people to eat a Mediterranean diet high in healthy fats such
as olive oil, whole grains, and fruits. There is descriptive evidence that lifespans are longer
among people who eat a Mediterranean diet compared with among people who eat a standard
diet. But does eating a Mediterranean diet cause longer lifespan? The figure below visualizes
this question in the potential outcomes framework.
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In this hypothetical example, each row corresponds to a person. Person 1 follows a Mediter-
ranean diet and is observed to have a lifespan indicated in blue. Person 2 does not follow
a Mediterranean diet and is observed to have a lifespan indicated in green. The descriptive
evidence is that lifespans are longer among those eating a Mediterranean diet (blue outcomes
on the left) compared with those eating standard diets (green outcomes on the left).

The right side of the figure corresponds to the causal claim, which is different. Person 1 has
two potential outcomes: a lifespan that would be realized under a Mediterranean diet and
a lifespan that would be realized under a standard diet. The causal effect for Person 1 is the
difference between the lifespans that would be realized for that person under each of the two
diets. But there is a fundamental problem: person 1 ate a Mediterranean diet, and we did
not get to observe their outcome under a standard diet. The fundamental problem of causal
inference (Holland 1986) is that causal claims involve a contrast between potential outcomes,
but for each unit only one of these potential outcomes is realized. The other is counterfactual
and cannot be directly observed.

We will need additional argument and assumptions to use the factual data (left side of the
figure) in order to produce answers about causal effects (right side of the figure). Causal
inference is a missing data problem insofar as many of the potential outcomes we need are
missing.
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Mathematical notation

Because each person has more than one potential outcome, we need new mathematical notation
to formalize causal claims. We will use subscripts to indicate units (rows of our data). Let 𝑌𝑖
be the outcome for person 𝑖, such as whether person 𝑖 survived. Let 𝐴𝑖 be the treatment of
person 𝑖, for example taking the value MediterraneanDiet or the value StandardDiet. To
refer more abstractly to a value the treatment could take, we use the lower case notation 𝑎 for
a treatment value. Define potential outcomes 𝑌 MediterraneanDiet

𝑖 and 𝑌 StandardDiet
𝑖 as the lifespan

outcomes that person 𝑖 would realize under each of the treatment conditions. More generally,
let 𝑌 𝑎

𝑖 denote the potential outcome for unit 𝑖 that would be realized if assigned to treatment
value 𝑎.

The causal effect is a contrast across potential outcomes. For example, the causal effect on
Ian’s lifespan of eating a Mediterranean diet versus a standard diet is

𝑌 MediterraneanDiet
Ian − 𝑌 StandardDiet

Ian

To connect causal claims to ideas we have already covered from sampling, we will adopt a
framework in which potential outcomes are fixed quantities with randomness arising from
sampling and/or from random treatment assignment. Each person has a fixed outcome
𝑌 MediterraneanDiet

𝑖 that would be observed if they were sampled and assigned a Mediterranean
diet. This is just like how every baseball player from last week had a salary that would be
observed if they were sampled. We will sometimes omit the 𝑖 subscript to refer to the ran-
dom variable for the potential outcome of a randomly-sampled person from the population,
𝑌 MediterraneanDiet.

The consistency assumption

We want to make causal claims about potential outcomes 𝑌 𝑎
𝑖 , but what we observe are factually

realized outcome 𝑌𝑖. To draw the connection, we need to assume that the factual outcomes
are consistent with what would be observed if the person in question were assigned to the
treatment condition that factually observed. Using 𝐴𝑖 to denote the factual treatment for
person 𝑖, we assume

𝑌 𝐴𝑖
𝑖 = 𝑌𝑖 (consistency assumption)

This assumption is often obviously true, but we will see later examples where it is violated.
One example is when person 𝑖’s outcome depends not only on their own treatment but also on
the treatment of some neighboring person 𝑗. In many of our initial examples, we will simply
assume the consistency assumption holds.
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Potential outcomes in math and in words

We will often use potential outcomes within mathematical statements. For example, we might
write about the expected outcome if assigned to a Mediterranean diet, 𝐸(𝑌 MediterraneanDiet).
Recall that the expectation operator 𝐸() says to take the population mean of the random
variable within the parentheses. We will also use conditional expectations, such as 𝐸(𝑌 ∣
𝐴 = MediterraneanDiet) which reads “the expected value of 𝑌 given that 𝐴 took the value
MediterraneanDiet.” The vertical bar says that we are taking the expected value of the
variable on the left of the bar within the subgroup defined on the right side of the bar.

In class, we practiced writing statements in math and in English. For example, the mathe-
matical statement

𝐸(Earning ∣ CollegeDegree = TRUE) > 𝐸(Earning ∣ CollegeDegree = FALSE)

is a descriptive statement that says the expected value of earnings is higher among the subgroup
with college degrees than among those without college degrees. We made these kinds of
descriptive claims already in code by using group_by() and summarize().

The mathematical statement

𝐸 (EarningCollegeDegree=TRUE) > 𝐸 (EarningCollegeDegree=FALSE)

is a causal claim that the expected value of earnings that a random person would realize if
assigned to a college degree is higher than the expected value if a random person were assigned
to no college degree. Because there is no vertical bar (∣), the causal claim is an average over
the entire population on both sides of the inequality. The descriptive claim, by contrast, is
an average over two different sets of units. The figure below visualizes the difference between
these descriptive and causal claims using a visual analogous to the one used to introduce a
Mediterranean diet.
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Exchangeability in simple random samples

Causal effects involve both factual and counterfactual outcomes, yet data that we can observe
involve only factual outcomes. To learn about causal effects from data that can be observed
requires assumptions about the data that are not observed. One way to learn about that is
by making an assumption known as exchangeability.

The figure below illustrates a population of 6 people. Each person has an outcome 𝑌𝑖, which for
example might be that person’s employment at age 40. A researcher draws a random sample
without replacement with equal sampling probabilities and records the sampled outcomes.
The researcher uses the average of the sampled outcomes as an estimator for the population
mean.

Why do probability samples like this work? They work because selection into the sample
(𝑆 = 1) is completely randomized and thus independent of the outcome 𝑌 . In other words,
the people who are sampled (𝑆 = 1) and the people who are unsampled (𝑆 = 0) have the
same distribution of outcomes (at least in expectation over samples). We might say that the
sampled and the unsampled units are exchangeable in the sense that they follow the same
distribution in terms of 𝑌 . In math, exchangeable sampling can be written as follows.
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𝑌⏟
Outcome

⟂⟂⏟
Is

Independent
of

𝑆⏟
Sample

Inclusion

Exchangeability holds in simple random samples because sampling is completely independent
of all outcomes by design. In other types of sampling, such as convenience samples that
enroll anyone who is interested, exchangeability may hold but is far from guaranteed. Perhaps
people who are employed are more likely to answer a survey about employment, so that the
employment rate in a convenience sample might far exceed the population mean employment
rate. Exchangeability is one condition under which reliable population estimates can be made
from samples, and probability samples are good because they make exchangeability hold by
design.

Exchangeability in randomized experiments

The figure below illustrates our population if they all enrolled in a hypothetical randomized
experiment. In this experiment, we imagine that each unit is either randomized to attain a
four-year college degree (𝐴 = 1) or to finish education with a high school diploma (𝐴 = 0).
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In this randomization, Maria, Sarah, and Jes'us were randomized to attain a four-year college
degree. We observe their outcomes under this treatment condition (𝑌 1). Because treatment
was randomized with equal probabilities, these three units form a simple random sample from
the full population of 6 people. We could use the sample mean of 𝑌 1 among the treated units
(Maria, Sarah, Jes'us) as an estimator of the population mean of 𝑌 1 among all 6 units.

William, Rich, and Alondra were randomized to finish their education with a high school
diploma. We see their outcomes under this control condition 𝑌 0. Their treatment assignment
(𝐴 = 0) is analogous to being sampled from the population of 𝑌 0 values. We can use their
sample mean outcome as an estimator of the population mean of 𝑌 0.

Formally, we can write the exchangeability assumption for treatment assignments as requiring
that the set of potential outcomes are independent of treatment assignment.

{𝑌 1, 𝑌 0}⏟
Potential
Outcomes

⟂⟂⏟
Are

Independent
of

𝐴⏟
Treatment

Exchangeability holds in randomized experiments because treatment is completely indepen-
dent of all potential outcomes by design. In observational studies, where treatment values are
observed but are not assigned randomly by the researcher, exchangeability may hold but is far
from guaranteed. In the coming classes, we will talk about generalizations of the exchange-
ability assumption that one can argue might hold in some observational settings.

Causal identification

A population-average causal effect could take many possible values. Using data alone, it is
impossible to identify which of these many possible values is the correct one. By pairing data
together with causal assumptions, however, one can identify the average causal effect by
equating it with a statistical quantity that only involves observable random variables.

Causal identification. A mathematical proof linking a causal estimand (involv-
ing potential outcomes) to a statistical quantity involving only factual random
variables.

In a randomized experiment, the average causal effect is identified by the assumptions of
consistency and exchangeability. A short proof can yield insight about the goals and how
these assumptions are used.
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Average
causal effect

(among everyone)
⏞⏞⏞⏞⏞⏞⏞E (𝑌 1) − E (𝑌 0)
= E (𝑌 1 ∣ 𝐴 = 1) − E (𝑌 0 ∣ 𝐴 = 0) by exchangeability
= E (𝑌 ∣ 𝐴 = 1)⏟⏟⏟⏟⏟

Mean outcome
among the treated

− E (𝑌 ∣ 𝐴 = 0)⏟⏟⏟⏟⏟
Mean outcome

among the untreated

by consistency

The proof begins with the average causal effect and equates it to a statistical estimand: the
mean outcome among the treated minus the mean outcome among the untreated. The first
quantity involves potential outcomes (with superscripts), whereas the last quantity involves
only factual random variables.

The exchangeability assumption allows us to move from the first line to the second line. Under
exchangeability, the mean outcome that would be realized under treatment (E(𝑌 1)) equals the
mean outcome under treatment among those who were actually treated (E(𝑌 0)). Likewise for
outcomes under no treatment. This line is true because the treated (𝐴 = 1) and the untreated
(𝐴 = 0) are both simple random samples from the full population.

The consistency assumption allows us to move from the second line to the third. Among the
treated, (𝐴 = 1), the outcome that is realized is 𝑌 = 𝑌 1. Among the untreated (𝐴 = 0),
the outcome that is realized is 𝑌 = 𝑌 0. Under the assumption that factual outcomes are
consistent with the potential outcomes under the assigned treatment, the second line equal
the third.

Something nice about a causal identification proof is that there is no room for error: it is
mathematically true that the premise and the assumptions together yield the result. As long
as the assumptions hold, the statistical estimand equals the causal estimand. Causal inference
thus boils down to research designs and arguments that can lend credibility to the assumptions
that let us draw causal claims from data that are observed.

Conditional exchangeability

Conditional exchangeability is an assumption that exchangeability holds within population
subgroups. This assumption holds by design in a conditionally randomized experiment, and
may hold under certain causal beliefs in observational settings where the treatment is not
randomized.

Suppose we were to carry out an experiment on a simple random sample of U.S. high school
students. Among those performing in the top 25% of their high school class, we randomize
80% to attain a four-year college degree. Among those performing in the bottom 75% of their
high school class, we randomize 20% to attain a four-year college degree. We are interested in
effects on employment at age 40 (𝑌 ).
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Among the bottom 75%

of the high school class

Among the top 25%
of the high school class

Randomly Assigned to

High School Degree

Four−Year College Degree

A hypothetical experiment:
Conditional randomization

This experiment is conditionally randomized because the probability of treatment (four-
year degree) is different among the higher- and lower-performing high school students.

Conditionally randomized experiment. An experiment in which the proba-
bility of treatment assignment depends on the values of pre-treatment covariates.
P(𝐴 = 1 ∣ �⃗� = ⃗𝑥) depends on the value ⃗𝑥.

In a conditionally randomized experiment, exchangeability is not likely to hold. People who
are treated (assigned to a four-year degree) are more likely to have come from the top 25%
of their high school class. They might be especially hard-working people. The treated and
untreated might have had different employment at age 40 even if none of them had been
treated.

Even though exchangeability does not hold marginally (across everyone), in a conditionally
randomized experiment exchangeability does hold within subgroups. If we focus on those in
the top 25% of the class, the 90% who are assigned to finish college are a simple random
sample of the entire higher-performing subgroup. If we focus on those in the bottom 75% of
the class, the 10% who are assigned to finish college are a simple random sample of the entire
lower-performing subgroup.

Formally, conditional exchangeability takes the exchangeability assumption ({𝑌 0, 𝑌 1} ⟂⟂ 𝐴)
and adds a conditioning bar ∣ �⃗�, meaning that this assumption holds within subgroups defined
by one or more pre-treatment variables �⃗�.
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Conditional exchangeability. The assumption that potential outcomes
{𝑌 0, 𝑌 1} are independent of treatment 𝐴 among subpopulations that are identical
along a set of pre-treatment covariates �⃗�. Formally, {𝑌 0, 𝑌 1} ⟂⟂ 𝐴 ∣ �⃗�.

Conditional exchangeability holds by design in conditionally randomized experiments: the
probability of treatment assignment differs across subgroups, but within each subgroup we have
a simple randomized experiment where each unit has an equal probability of being treated.

Conditional average treatment effects

In our conditionally randomized experiment, we could identify conditional average treatment
effects: the average effects of college on employment at age 40 (1) among those in the top 25%
of their high school class, and the and (2) among those in the bottom 75% of their high school
class.

Conditional average treatment effect (CATE). The average causal effect
within a population subgroup, 𝜏(𝑥) = E (𝑌 1 ∣ �⃗� = ⃗𝑥) − E (𝑌 0 ∣ �⃗� = ⃗𝑥).

Once we assume conditional exchangeability and consistency, CATEs are causally identified
by working within a subgroup defined by �⃗� = ⃗𝑥 and taking the difference in means across
subgroups of units assigned to treatment and control.

E (𝑌 1 ∣ �⃗� = ⃗𝑥) − E (𝑌 0 ∣ �⃗� = ⃗𝑥)
= E (𝑌 ∣ �⃗� = ⃗𝑥, 𝐴 = 1) − E (𝑌 ∣ �⃗� = ⃗𝑥, 𝐴 = 0)

In our concrete example, this means that we could first focus on the subgroup for whom
�⃗� = (Top 25% of high school class). Within this subgroup, we can compare employment at
age 40 among those randomized to a 4-year college degree to employment at age 40 among
those randomized to finish education after high school. This mean difference identifies the
CATE: the average causal effect of college among those in the top 25% of their high school
class.

Likewise, our experiment would also identify the CATE among those in the bottom 75% of
their high school class.

There are often good reasons to expect the Conditional Average Treatment Effect (CATE)
to differ across subpopulations. In our example, suppose that those from the top 25% of the
high school class are very creative and hard-working, and would find ways to be employed
at age 40 regardless of whether they finished college. The average causal effect of college on
employment in this subgroup might be small. Meanwhile, the average causal effect of college
on employment might be quite large among those from the bottom 75% of their high school
class. This would be an example of effect heterogeneity,
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Effect heterogeneity. Differences in Conditional Average Treatment Effects
(CATEs) across subpopulations. 𝜏( ⃗𝑥) ≠ 𝜏( ⃗𝑥′).

An advantage of analyzing randomized experiments conditionally (within subgroups) is that
one can search for effect heterogeneity.

Observational studies call for DAGs

The material above focused on randomized experiments in which the researcher randomizes
the treatment variable. In a randomized experiment, the researcher knows the probability
with which treatment was assigned to each unit. Either exchangeability or conditional ex-
changeability holds by design. Many social science studies, however, focus on questions in
which randomization is infeasible due to high costs or even the impossibility of randomizing a
treatment. Many social science studies are therefore observational studies.

Observational study. A study seeking to answer a causal question in which the
researcher has not randomized the treatment variable.

Where randomized experiments call for precise research design in which the researcher assigns
the treatment, observational studies call for precise theory about how the world has assigned
the treatments and how the world has generated outcomes. Directed Acyclic Graphs (DAGs)
are a tool to formalize causal assumptions mathematically in graphs.

Directed Acyclic Graph (DAG). A mathematical graph involving nodes and
edges, where all edges are directed and there are no cycles. See below for definitions
of nodes and edges.

DAGs are especially helpful in observational studies because they provide rules for selecting a
sufficient adjustment set (�⃗�) such that conditional exchangeability holds.

Nodes, edges, and paths

Consider again our conditionally randomized experiment in which the researcher assigned
participants to the treatment condition of (four-year college degree) vs (high school degree)
with probabilities that depended on high school class rank. In this experiment, being in the
top 25% of one’s high school class caused a higher chance of receiving the treatment. We will
also assume that both high school performance and college completion may causally shape
employment at age 40.

We can formalize these ideas in a graph where each node (a letter) is a variable and each
edge (→) is a causal relationship.
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X

A Y

In top 25%
of high school class?

Assigned to four-year
college degree?

Employed at
age 40?

Between each pair of nodes, you can enumerate every path or sequence of edges connecting
the nodes.

Path. A path between nodes 𝐴 and 𝐵 is any set of edges that starts at 𝐴 and
ends at 𝐵. Paths can involve arrows in either direction.

In our DAG above, there are two paths between 𝐴 and 𝑌 .

1) 𝐴 → 𝑌
2) 𝐴 ← 𝑋 → 𝑌

We use paths to determine the reasons why 𝐴 and 𝑌 might be statistically dependent or
independent.

Causal paths

The first type of path that we consider is a causal path.

Causal path. A path in which all arrows point in the same direction. For example,
𝐴 and 𝐷 could be connected by a causal path 𝐴 → 𝐵 → 𝐶 → 𝐷.

A causal path creates statistical depends between the nodes because the first node causes the
last node, possibly through a sequence of other nodes.

In our example, there is a causal path 𝐴 → 𝑌 : being assigned to a four-year college degree
affects employment at age 40. Because of this causal path, people who are assigned to a
four-year degree have different rates of employment at age 40 than those who are not.

A causal path can go through several variables. For example, if we listed the paths between 𝑋
and 𝑌 we would include the path 𝑋 → 𝐴 → 𝑌 . This is a causal path because being in the top
25% of one’s high school class increases the probability of assignment to a four-year degree in
our experiment, which in turn increases the probability of employment at age 40.
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Fork structures

To reason about non-causal paths, we have to think about several structures that can exist
along these paths. The first such structure is a fork structure.

Fork structure. A fork structure is a sequence of edges in which two variables
(𝐴 and 𝐵) are both caused a third variable (𝐶): 𝐴 ← 𝐶 → 𝐵.

In our example, the path 𝐴 ← 𝑋 → 𝑌 involves a fork structure. being in the top 25% of
one’s high school class causally affects both the treatment (college degree) and the outcome
(employment at age 40).

A fork structure creates statistical dependence between 𝐴 and 𝑌 that does not correspond to
a causal effect of 𝐴 on 𝑌 . In our example, people who are assigned to the treatment value
(college degree) are more likely to have been in the top 25% of their high school class, since
this high class rank affected treatment assignment in our experiment. A high class rank also
affected employment at age 40. Thus, in our experiment the treatment would be associated
with the outcome even if finishing college had no causal effect on employment.

Fork structures can be blocked by conditioning on the common cause. In our example,
suppose we filter our data to only include those in the top 25% of their high school class. We
sometimes use a box to denote conditioning on a variable, (𝐴 ← 𝑋 → 𝑌 ). Conditioning on
𝑋 blocks the path because within this subgroup 𝑋 does not vary, so it cannot cause the values
of 𝐴 and 𝑌 within the subgroup. In our example, if we looked among those in the top 25% of
their high school classes the only reason college enrollment would be related to employment
at age 40 would be the causal effect 𝐴 → 𝑌 .

To emphasize ideas, it is also helpful to consider a fork structure in an example where the
variables have no causal relationship.

Suppose a beach records for each day the number of ice cream cones sold and the number of
rescues by lifeguards. There is no causal effect between these two variables; eating ice cream
does not cause more lifeguard rescues and vice versa. But the two are correlated because they
share a common cause: warm temperatures cause high ice cream sales and also high lifeguard
rescues. A fork structure formalizes this notion: (ice cream sales) ← (warm temperature) →
(lifeguard rescues).
In the population of days as a whole, this fork structure means that ice cream sales are related
to lifeguard rescues. But if we condition on having a warm temperature by filtering to days
when the temperature took a particular value, ice cream sales would be unrelated to lifeguard
rescues across those days. This is the sense in which conditioning on the common cause variable
blocks the statistical associations that would otherwise arise from a fork structure.
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Collider structures

In contrast to a fork structure where one variable affects two others (• ← • → •), a collider
structure is a structure where one variable is affected by two others.

Collider structure. A collider structure is a sequence of edges in which two
variables (𝐴 and 𝐵) both cause a third variable (𝐶). We say that 𝐶 is a collider
on the path 𝐴 → 𝐶 ← 𝐵.

Fork and collider structures have very different properties, as we will illustrate through an
example.

Suppose that every day I observe whether the grass on my lawn is wet. I have sprinklers that
turn on with a timer at the same time every day, regardless of the weather. It also sometimes
rains. When the grass is wet, it is wet because either the sprinklers have been on or it has
been raining.

(sprinklers on) → (grass wet) ← (raining)

If I look across all days, the variable (sprinklers on) is unrelated to the variable (raining). After
all, the sprinklers are just on a timer! Formally, we say that even though (sprinklers on) and
(raining) are connected by the path above, this path is blocked by the collider structure. A
path does not create dependence between two variables when it contains a collider structure.

If I look only at the days when the grass is wet, a different pattern emerges. If the grass is wet
and the sprinklers have not been on, then it must have been raining: the grass had to get wet
somehow. If the grass is wet and it has not been raining, then the sprinklers must have been
on. Once I look at days when the grass is wet (or condition on the grass being wet), the two
input variables become statistically associated.

A collider blocks a path when that collider is left unadjusted, but conditioning on the collider
variable opens the path containing the collider.

Open and blocked paths

A central purpose of a DAG is to connect causal assumptions to implications about associations
that should be present (or absent) in data under those causal assumptions. To make this
connection, we need a final concept of open and blocked paths.

A path is blocked if it contains an unconditioned collider or a conditioned non-
collider. Otherwise, the path is open. An open path creates statistical dependence
between its terminal nodes whereas a blocked path does not.

As examples for a path with no colliders,
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• 𝐴 ← 𝐵 → 𝐶 → 𝐷 is an open path because no variables are conditioned and it contains
no colliders.

• 𝐴 ← 𝐵 → 𝐶 → 𝐷 is a blocked path because we have conditioned on the non-collider
𝐵.

• 𝐴 ← 𝐵 → 𝐶 → 𝐷 is a blocked path because we have conditioned on the non-collider
𝐶.

Determining statistical dependence

We are now ready to use DAGs to determine if 𝐴 and 𝐵 are statistically dependent. The
process involves three steps.

1. List all paths between 𝐴 and 𝐵.
2. Cross out any paths that are blocked.
3. The causal assumptions imply that 𝐴 and 𝐵 may be statistically dependent only if any

open paths remain.

As an example, below we consider a hypothetical DAG.

X

A

B

C D

1. Marginal dependence

Marginally without any adjustment, are 𝐴 and 𝐷 statistically dependent? We first write out
all paths connecting 𝐴 and 𝐷.

• 𝐴 → 𝐵 ← 𝐶 → 𝐷
• 𝐴 ← 𝑋 → 𝐷

We then cross out the paths that are blocked

• (((((((((
𝐴 → 𝐵 ← 𝐶 → 𝐷 (blocked by unconditioned collider 𝐵)

• 𝐴 ← 𝑋 → 𝐷

Because an open path remains, 𝐴 and 𝐷 are statistically dependent.

2. Dependence conditional on 𝑋
If we condition on 𝑋, are 𝐴 and 𝐷 statistically dependent? We first write out all paths
connecting 𝐴 and 𝐷.

• 𝐴 → 𝐵 ← 𝐶 → 𝐷
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• 𝐴 ← 𝑋 → 𝐷

We then cross out the paths that are blocked

• (((((((((
𝐴 → 𝐵 ← 𝐶 → 𝐷 (blocked by unconditioned collider 𝐵)

• �������
𝐴 ← 𝑋 → 𝐷 (blocked by conditioned non-collider 𝑋)

Because no open path remains, 𝐴 and 𝐷 are statistically independent.

3. Dependence conditional on {𝑋, 𝐵}
If we condition on 𝑋 and 𝐵, are 𝐴 and 𝐷 statistically dependent? We first write out all paths
connecting 𝐴 and 𝐷.

• 𝐴 → 𝐵 ← 𝐶 → 𝐷
• 𝐴 ← 𝑋 → 𝐷

We then cross out the paths that are blocked

• 𝐴 → 𝐵 ← 𝐶 → 𝐷 (open since collider 𝐵 is conditioned)
• �������

𝐴 ← 𝑋 → 𝐷 (blocked by conditioned non-collider 𝑋)

Because an open path remains, 𝐴 and 𝐷 are statistically dependent.

Causal identification with DAGs

When our aim is to identify the average causal effect of 𝐴 on 𝑌 , we want to choose a set of
variables for adjustment so that all remaining paths are causal paths. We call this a sufficient
adjustment set.

A sufficient adjustment set for the causal effect of 𝐴 on 𝑌 is a set of nodes that,
when conditioned, block all non-causal paths between 𝐴 and 𝑌 .

In our example from the top of this page, there were two paths between 𝐴 and 𝑌 :

• (𝐴: college degree) → (𝑌 : employed at age 40)
• (𝐴: college degree) ← (𝑋: top 25% of high school class) → (𝑌 : employed at age 40)

In this example, 𝑋 is a sufficient adjustment set. Once we condition on 𝑋 by e.g. filtering to
those in the top 25% of their high school class, the only remaining path between 𝐴 and 𝑌 is
the causal path 𝐴 → 𝑌 . Thus, the difference in means in 𝑌 across 𝐴 within subgroups defined
by 𝑋 identifies the conditional average causal effect of 𝐴 on 𝑌 .

A more difficult example.

Sufficient adjustment sets can be much more complicated. As an example, consider the DAG
below.
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We first list all paths between 𝐴 and 𝑌 .

1) 𝐴 → 𝑌
2) 𝐴 → 𝑀 → 𝑌
3) 𝐴 ← 𝑋1 → 𝑋3 → 𝑌
4) 𝐴 ← 𝑋1 → 𝑋3 ← 𝑋2 → 𝑌
5) 𝐴 ← 𝑋3 → 𝑌
6) 𝐴 ← 𝑋3 ← 𝑋2 → 𝑌

The first two paths are causal, and the others are non-causal. We want to find a sufficient
adjustment set to block all the non-causal paths.

In order to block paths (3), (5), and (6) we might condiiton on 𝑋3. But doing so opens path
(2), which was otherwise blocked by the collider 𝑋3. In order to also block path (2), we might
additionally condition on 𝑋1. In this case, our sufficient adjustment set is {𝑋1, 𝑋3}.

1) 𝐴 → 𝑌
2) 𝐴 → 𝑀 → 𝑌
3)

((((((((((((
𝐴 ← 𝑋1 → 𝑋3 → 𝑌

4)
(((((((((((((((
𝐴 ← 𝑋1 → 𝑋3 ← 𝑋2 → 𝑌

5)
��������𝐴 ← 𝑋3 → 𝑌

6)
(((((((((((𝐴 ← 𝑋3 ← 𝑋2 → 𝑌

Then the only open paths are paths (1) and (2), both of which are causal paths from 𝐴 to
𝑌 .

Sometimes there are several sufficient adjustment sets. In this example, sufficient adjustment
sets include:

• {𝑋1, 𝑋3}
• {𝑋2, 𝑋3}
• {𝑋1, 𝑋2, 𝑋3}

We sometimes call the first two minimal sufficient adjustment sets because they are the small-
est.
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A minimal sufficient adjustment set is an adjustment set that achieves causal
identification by conditioning on the fewest number of variables possible.

How to draw a DAG

So far, we have focused on causal identification with a DAG that has been given. But how do
you draw one for yourself?

When drawing a DAG, there is an important rule: any node that would have edges pointing
into any two nodes already represented in the DAG must be included. This is because what
you omit from the DAG is far more important than what you include in the DAG. Many of
your primary assumptions are about the nodes and edges that you leave out.

For example, suppose we are estimating the causal effect of a college degree on employment
at age 40. After beginning our DAG with only these variables, we have to think about any
other variables that might affect these two. High school performance is one example. Then
we have to include any nodes that affect any two of {high school performance, college degree,
employment at age 40}. Perhaps a person’s parents’ education affects that person’s high school
performance and college degree attainment. Then parents’ education should be included as
an additional node. The cycle continues, so that in observational causal inference settings you
are likely to have a DAG with many nodes.

In practice, you may not have data on all the nodes that comprise the sufficient adjustment
set in your graph. In this case, we recommend that you first draw a graph under which you
can form a sufficient adjustment set with the measured variables. This allows you to state one
set of causal beliefs under which your analysis can answer your causal question. Then, also
draw a second DAG that includes the other variables you think are relevant. This will enable
you to reason about the sense in which your results could be misleading because of omitting
important variables.

What to read

If you’d like to learn more about defining and identifying causal effects, look here:

• Hern'an, Miguel A. and James M. Robins. 2025. Causal Inference: What If?. Boca
Raton: Chapman & Hall / CRC.

• Brand, Jennie E. 2023. Overcoming the Odds: The Benefits of Completing College for
Unlikely Graduates. Russell Sage Foundation. Here is a link to read online through the
UCLA Library.

If you’d like to learn from some canonical references on DAGs, look here:

• Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause
and Effect. New York: Basic Books.
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https://miguelhernan.org/whatifbook
https://www.russellsage.org/publications/overcoming-odds
https://www.russellsage.org/publications/overcoming-odds
https://search.library.ucla.edu/permalink/01UCS_LAL/17p22dp/alma9919490742806531
https://search.library.ucla.edu/permalink/01UCS_LAL/17p22dp/alma9919490742806531
https://www.hachettebookgroup.com/titles/judea-pearl/the-book-of-why/9781541698963
https://www.hachettebookgroup.com/titles/judea-pearl/the-book-of-why/9781541698963


• Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. 2016. Causal Inference in
Statistics: A Primer. New York: Wiley.

• Pearl, Judea. 2009. Causality: Models, Reasoning, and Inference. Edition 2. Cambridge:
Cambridge University Press.

• Greenland, Sander, Judea Pearl, and James M. Robins. 1999. “Causal diagrams for
epidemiologic research.” Epidemiology 10(1):37–48.
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https://bayes.cs.ucla.edu/PRIMER/
https://bayes.cs.ucla.edu/PRIMER/
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://journals.lww.com/epidem/abstract/1999/01000/causal_diagrams_for_epidemiologic_research.8.aspx
https://journals.lww.com/epidem/abstract/1999/01000/causal_diagrams_for_epidemiologic_research.8.aspx
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