
Prediction for causal and population inference
Soc 212B Winter 2025

This session will be about prediction to draw population inference from non-probability sam-
ples and causal inference from observational studies, both of which involve analogous assump-
tions and estimators. If you have a Census with features �⃗�, ignorable sampling conditional
on �⃗�, and a good sample estimator of 𝐸(𝑌 ∣ �⃗�) then you can predict 𝐸(𝑌 ∣ �⃗�) and aggregate
over the Census-known population distribution of �⃗�. For causal inference, being assigned to
treatment is analogous to being sampled to observe the potential outcome under treatment.

Prediction to describe with non-probability samples

Suppose you collect a non-probability sample, such as people willing who respond on a survey
on Amazon Mechanical Turk. Each person answers three questions:

1. What is your sex?
2. What is your age?
3. Have you ever had a TikTok account?

You want to estimate the rate of using TikTok in the full U.S. population. But you worry
about your sample: perhaps the age distribution of your sample is younger than the U.S.
population, and younger people are more likely to have a TikTok account. Formally, whether
a unit is sampled 𝑆 is not independent of that unit’s outcome 𝑌 .

𝑆⟂̸𝑌

You hope that it might help that your survey also measured sex and age. One thing you
might do is to use logistic regression to estimate an outcome model to predict the probability
of having a TikTok within these subgroups,

logit (P̂(𝑌 = 1 ∣ 𝑆 = 1, �⃗�)) = ̂𝛽0 + ̂𝛽1(Sex = Female) + ̂𝛽2(Age)

where �⃗� contains the variables sex and age. Now you can predict the probability of having a
TikTok within any subgroup defined by sex and age.

1

But how to use these predictions? You might think it would help to have the population
distribution of sex and age from the U.S. Census Bureau. From these data, you know the
population distribution of �⃗�.

P(�⃗� = ⃗𝑥) is known for all ⃗𝑥

You have an estimate of P(𝑌 = 1 ∣ 𝑆, �⃗� = ⃗𝑥) and a known value for P(�⃗� = ⃗𝑥). We would like
to estimate the population mean by averaging the subgroup predictions over the distribution
of subgroups.

P(𝑌) = ∑
�⃗�

P(𝑌 ∣ �⃗� = ⃗𝑥)P(�⃗� = ⃗𝑥)

But unfortunately, you still do not know the population mean TikTok use within groups
defined by sex and age! While you have an estimate in your sample P̂(𝑌 ∣ 𝑆 = 1, �⃗� = ⃗𝑥) this
may not be the same as the population mean P(𝑌 ∣ �⃗� = ⃗𝑥).
Here we will make a heroic assumption1 of conditionally ignorable sampling:

𝑆 ⟂ 𝑌 ∣ �⃗� (equivalently) P(𝑌 ∣ 𝑆 = 1, �⃗� = ⃗𝑥) = P(𝑌 ∣ �⃗� = ⃗𝑥)
This assumption says that whether one is sampled 𝑆 tells me nothing about TikTok use 𝑌 once
I am looking within a subgroup of people of a particular age and particular sex (�⃗� = ⃗𝑥).

Group task. Draw a DAG to defend this assumption. Note possible edges that
would undermine this assumption.

If the assumption holds, one can use the predicted values from the regression to estimate the
population average value of 𝑌 .

P̂(𝑌) = ∑
�⃗�

P̂(𝑌 ∣ �⃗� = ⃗𝑥)P(�⃗� = ⃗𝑥)

This suggests a procedure to use regression to estimate population means:

• measure �⃗� and 𝑌 in a non-probability sample
• measure �⃗� in a probability sample or census
• assume exchangeable sampling given �⃗�

– (often a heroic assumption!)

• model E(𝑌 ∣ �⃗�) or P(𝑌 ∣ �⃗�) in the non-probability sample

1Heroic assumptions are assumptions that do a lot of work to make our quantities of interest identified. When
I use “heroic”, I often mean an assumption that is not very credible.

2

https://www.census.gov/data/tables/2020/demo/age-and-sex/2020-age-sex-composition.html
https://www.census.gov/data/tables/2020/demo/age-and-sex/2020-age-sex-composition.html

• estimate P(�⃗� = ⃗𝑥) in the probability sample or census
• re-aggregate Ê(𝑌 ∣ �⃗�) using the weights P̂(�⃗� = ⃗𝑥)

You could also use a weighting procedure, to be discussed next class.

Real example: Xbox survey

In a survey carried out in 2012 on the Xbox gaming platform, Wang et al. (2015) asked
respondents: “If the election were held today, who would you vote for?”

Why might this survey make for poor forecasts of the election outcome? The respondents
looked very different from the U.S. electorate, notably much younger and much more likely
to be men (see Fig 1 in the original paper). But the data were also very rich. There were
over 700,000 responses. The researchers collected many demographic variables: sex, race, age,
education, state, party ID, political ideology, and who they voted for in the 2008 presidential
election.

Using these variables, the authors used a multilevel model to estimate the probability of
supporting Obama in the 2012 presidential election. Under an assumption of exchangeable
sampoling within subgroups, they were able to proportion supporting Obama within each
subgroup �⃗� = ⃗𝑥.

P̂(𝑌 = 1 ∣ 𝑆 = 1, �⃗� = ⃗𝑥) = logit−1(complicated function of ⃗𝑥)
Then the authors used exit poll data from the 2008 election to estimate the population dis-
tribution of �⃗�. They worked under the assumption that the 2012 electorate would be demo-
graphically similar to the 2008 electorate. Putting these together, they produced an overall
estimate:

P̂(𝑌 = 1) = ∑
�⃗�

P̂(�⃗� = ⃗𝑥)⏟⏟⏟⏟⏟
Stratum size,

estimated from
2008 exit polls

P̂(𝑌 = 1 ∣ 𝑆 = 1, �⃗� = ⃗𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Prediction within the stratum,
estimated from Xbox survey

They also made predictions within particular states…and the predictions were remarkably
accurate! Conditionally exchangeable sampling may be a heroic assumption, but it worked
well in this particular case.

3

https://www.sciencedirect.com/science/article/pii/S0169207014000879

Takeaways: Prediction to describe

Predictive outcome models can greatly improve the usefulness of non-probability samples for
population inferences. But there are a few key requirements to remember.

First, you are studying 𝑌 but the real key is �⃗�!

1. �⃗� must create conditional exchangeability: 𝑆 ⟂ 𝑌 ∣ �⃗�
2. �⃗� must be measured in a probability sample or census
3. �⃗� must be measured in the non-probability sample

Consideration (1) may require a very extensive set of variables be included in �⃗�. But even if
you can measure them in your non-probability sample (2), you need to also be able to estimate
their population distribution (3). In practice, the feasibility of (3) often leads to estimates that
use only a small set of �⃗� variables, rendering (1) perhaps less credible.

Second, the task of moving from a non-probability sample to a population estimate does not
necessarily require an outcome model; it can also be carried out by weighting (next class). The
added benefit of a model is that it might produce better subgroup mean estimates E(𝑌 ∣ �⃗� = ⃗𝑥)
by pooling information across subgroups (e.g., by a line).

Causal inference: Example on paper

Prediction for causal inference proceeds by the same general process. For simplicity, we will
assume one probability sample.

• assume conditional exchangeability: {𝑌 1, 𝑌 0} ⟂ 𝐴 ∣ �⃗�
• model E(𝑌 ∣ 𝐴, �⃗�)
• predict 𝑌 1 and 𝑌 0 for all units
• average over units

We will start with a simple example that can be carried out on paper. Suppose a researcher
estimates the following regression of 𝑌 on treatment 𝐴 and a confounder 𝑋, which we assume
is a sufficient adjustment set.

Ê(𝑌 ∣ �⃗�, 𝐴) = ̂𝛽Intercept + ̂𝛽𝑋𝑋 + ̂𝛽𝐴𝐴 + ̂𝛽𝑋𝐴𝑋𝐴

A hypothetical set of estimates are provided below.

̂𝛽Intercept = 0
̂𝛽𝑋 = 1
̂𝛽𝐴 = 2

̂𝛽𝑋𝐴 = 1

4

You want to estimate the average treatment effect over a population of four units. Using this
model, can you fill in estimates for ̂𝑌 1 and ̂𝑌 0? What is the average causal effect?

ID 𝑋 ̂𝑌 1 ̂𝑌 0 ̂𝑌 1 − ̂𝑌 0

1 0 ? ? ?
2 1 ? ? ?
3 1 ? ? ?
4 1 ? ? ?

Causal inference with OLS: Simulated example in code

Next, we consider outcome modeling for causal inference using simulated data in code. The
code below will generate a dataset of 𝑛 = 100 observations. Each observation contains several
observed variables:

• L1 A numeric confounder
• L2 A numeric confounder
• A A binary treatment
• Y A numeric outcome

Each observation also contains outcomes that we know only because the data are simulated.
These variables are useful as ground truth in simulations.

• propensity_score The true propensity score 𝑃(𝐴 = 1 ∣ �⃗�)
• Y0 The potential outcome under control
• Y1 The potential outcome under treatment

To run this code, you will need the dplyr package. If you don’t have it, first run the line
install.packages("dplyr") in your R console. Then, add this line to your R script to load
the package.

library(dplyr)

If you want your simulation to match our numbers exactly, add a line to set your seed.

set.seed(90095)

n <- 500
data <- tibble(
L1 = rnorm(n),
L2 = rnorm(n)

5

) |>
Generate potential outcomes as functions of L
mutate(Y0 = rnorm(n(), mean = L1 + L2, sd = 1),

Y1 = rnorm(n(), mean = Y0 + 1, sd = 1)) |>
Generate treatment as a function of L
mutate(propensity_score = plogis(-2 + L1 + L2)) |>
mutate(A = rbinom(n(), 1, propensity_score)) |>
Generate factual outcome
mutate(Y = case_when(A == 0 ~ Y0,

A == 1 ~ Y1))

A simulation is nice because the answer is known. In this simulation, the conditional average
causal effect of A on Y equals 1 at any value of L1 and L_2.

Because the causal effect of A on Y is identified by adjusting for the confounders L1 and L2,
we can estimate by outcome modeling.

1) Model 𝐸(𝑌 ∣ 𝐴, 𝐿1, 𝐿2), the conditional mean of 𝑌 given the treatment and confounders
2) Predict potential outcomes

• set A = 1 for every unit. Predict 𝑌 1

• set A = 0 for every unit. Predict 𝑌 0

3) Aggregate to the average causal effect

1) Model

The code below uses Ordinary Least Squares to estimate an outcome model.

model <- lm(Y ~ A*(L1 + L2), data = data)

Call:
lm(formula = Y ~ A * (L1 + L2), data = data)

Residuals:
Min 1Q Median 3Q Max

-4.1448 -0.7105 0.0097 0.6998 3.1743

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01606 0.05699 0.282 0.77827

6

A 1.11555 0.18021 6.190 1.26e-09 ***
L1 1.06333 0.05938 17.907 < 2e-16 ***
L2 1.11199 0.05951 18.685 < 2e-16 ***
A:L1 -0.39475 0.14279 -2.765 0.00591 **
A:L2 -0.28935 0.13940 -2.076 0.03844 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.111 on 494 degrees of freedom
Multiple R-squared: 0.6732, Adjusted R-squared: 0.6699
F-statistic: 203.6 on 5 and 494 DF, p-value: < 2.2e-16

We chose a model where treatment A is interacted with an additive function of confounders
L1 + L2. This is also known as a t-learner (Kunzel et al. 2019) because it is equivalent to
estimating two separate regression models of outcome on confounders, one among those for
whom A == 1 and among those for whom A == 0.

2) Predict

The code below predicts the conditional average potential outcome under treatment and control
at the confounder values of each observation.

First, we create data with A set to the value 1.

data_1 <- data |>
mutate(A = 1)

A tibble: 500 x 7
L1 L2 Y0 Y1 propensity_score A Y

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00304 1.03 0.677 1.59 0.276 1 0.677
2 -2.35 -1.66 -4.09 -3.53 0.00244 1 -4.09
3 0.104 -0.912 0.0659 1.31 0.0569 1 0.0659
i 497 more rows

Then, we create data with A set to the value 0.

data_0 <- data |>
mutate(A = 0)

7

https://www.pnas.org/doi/abs/10.1073/pnas.1804597116

A tibble: 500 x 7
L1 L2 Y0 Y1 propensity_score A Y

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00304 1.03 0.677 1.59 0.276 0 0.677
2 -2.35 -1.66 -4.09 -3.53 0.00244 0 -4.09
3 0.104 -0.912 0.0659 1.31 0.0569 0 0.0659
i 497 more rows

We use our outcome model to predict the conditional mean of the potential outcome under
each scenario.

predicted <- data |>
mutate(

Y1_predicted = predict(model, newdata = data_1),
Y0_predicted = predict(model, newdata = data_0),
effect_predicted = Y1_predicted - Y0_predicted

)

A tibble: 500 x 10
L1 L2 Y0 Y1 propensity_score A Y Y1_predicted

<dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
1 0.00304 1.03 0.677 1.59 0.276 0 0.677 1.98
2 -2.35 -1.66 -4.09 -3.53 0.00244 0 -4.09 -1.81
3 0.104 -0.912 0.0659 1.31 0.0569 0 0.0659 0.451
i 497 more rows
i 2 more variables: Y0_predicted <dbl>, effect_predicted <dbl>

3) Aggregate

The final step is to aggregate to an average causal effect estimate.

aggregated <- predicted |>
summarize(average_effect_estimate = mean(effect_predicted))

A tibble: 1 x 1
average_effect_estimate

<dbl>
1 1.13

8

Logistic regression: A realistic simulated example

This section illustrates outcome modeling with a more realistic simulated dataset involving
many confounders. We also use logistic regression as our outcome model.

Data-based simulation

To what extent does completing a four-year college degree by age 25 increase the probability
of having a spouse or residential partner with a four-year college degree at age 35, among the
population of U.S. residents who were ages 12–16 at the end of 1996?

This causal question draws on questions in sociology and demography about assortative mat-
ing: the tendency of people with high education, income, or status to form households to-
gether2. One reason to care about assortative mating is that it can contribute to inequality
across households: if people with high earnings potential form households together, then in-
come inequality across households will be greater than it would be if people formed households
randomly.

Our question is causal: to what extent is the probability of marrying a four-year college
graduate higher if one were hypothetically to finish a four-year degree, versus if that same
person were hypothetically to not finish a college degree? But in data that exist in the world,
we see only one of these two potential outcomes. The people for whom we see the outcome
under a college degree are systematically different from those for whom we see the outcome
under no degree: college graduates come from families with higher incomes, higher wealth, and
higher parental education, for example. All of these factors may directly shape the probability
of marrying a college graduate even in the absence of college. Thus, it will be important to
adjust for a set of measured confounders, represented by �⃗� in our DAG.

A Y

X1
X2
X3
X4
X5
X6
X7

College
Degree

by Age 25

Spouse
at Age 35
Has Degree

Sex
Race

Mom Education
Dad Education

Income
Wealth

Test Percentile

By adjusting for the variables �⃗�, we block all non-causal paths between the treatment 𝐴 and
the outcome 𝑌 in the DAG. If this DAG is correct, then conditional exchangeability holds
with this adjustment set: {𝑌 1, 𝑌 0} ⟂ 𝐴 ∣ �⃗�.

To estimate, we use data from the National Longitudinal Survey of Youth 1997, a probability
sample of U.S. resident children who were ages 12–16 on Dec 31, 1996. The study followed

2For reviews, see Mare 1991 and Schwartz 2013.

9

https://www.bls.gov/nls/nlsy97.htm
https://doi.org/10.2307/2095670
https://doi.org/10.1146/annurev-soc-071312-145544

these children and interviewed them every year through 2011 and then every other year after
that.

We will analyze a simulated version of these data (nlsy97_simulated.csv), which you can access
with this line of code.

all_cases <- read_csv("https://ilundberg.github.io/soc212b/data/nlsy97_simulated.csv")

Expand to learn how to get the actual data

To access the actual data, you would need to register for an account, log in, upload
the nlsy97.NLSY97 tagset that identifies our variables, and then download. Unzip
the folder and put the contents in a directory on your computer. Then run our code
file prepare_nlsy97.R in that folder. This will produce a new file d.RDS, contains the
data. You could analyze that file. In the interest of transparency, we wrote the code
nlsy97_simulated.R to convert these real data to simulated data that we can share.

The data contain several variables

• id is an individual identifier for each person
• a is the treatment, containing the respondent’s education coded treated if the respon-

dent completed a four-year college degree and untreated if not.
• y is the outcome: TRUE if has a spouse or residential partner at age 35 who holds a college

degree, and FALSE if no spouse or partner or if the spouse or partner at age 35 does not
have a degree.

• There are several pre-treatment variables
– sex is coded Female and Male
– race is race/ethnicity and is coded Hispanic, Non-Hispanic Black, and

Non-Hispanic Non-Black.
– mom_educ is the respondent’s mother’s education as reported in 1997. It takes the

value No mom if the child had no residential mother in 1997, and otherwise is coded
with her education: < HS, High school, Some college, or College.

– dad_educ is the respondent’s father’s education as reported in 1997. It takes the
value No dad if the child had no residential father in 1997, and otherwise is coded
with his education: < HS, High school, Some college, or College.

– log_parent_income is the log of gross household income in 1997
– log_parent_wealth is the log of household net worth in 1997
– test_percentile is the respondent’s percentile score on a test of math and verbal

skills administered in 1999 (the Armed Services Vocational Aptitude Battery).

When values are missing, we have replcaed them with predicted values. In the simulated data,
no row represents a real person because values have been drawn randomly from a probability
distribution designed to mimic what exists in the real data. As discussed above, we did this
in order to share the file with you by a download on this website.

10

data/nlsy97_simulated.csv
https://nlsinfo.org/investigator/pages/register
https://nlsinfo.org/investigator/pages/login
data/nlsy97.NLSY97
data/prepare_nlsy97.R
data/nlsy97_simulated.R

1) Model

One can estimate outcome models using all the data (as in the example above) or separately
by treatment status. In this example, we use the latter option.

untreated_cases <- all_cases |> filter(a == "untreated")
treated_cases <- all_cases |> filter(a == "treated")

We use the untreated cases to estimate a model for 𝑌 0 as a function of 𝑋. If our data include
sampling weights, then we weight this model by the sampling weights.

logistic_model_for_y0 <- glm(
y ~ sex + race + mom_educ + dad_educ + log_parent_income +

log_parent_wealth + test_percentile,
family = binomial,
data = untreated_cases,
weights = sampling_weight

)

Likewise, we estimate a model for 𝑌 1 among treated units.

logistic_model_for_y1 <- glm(
y ~ sex + race + mom_educ + dad_educ + log_parent_income +

log_parent_wealth + test_percentile,
family = binomial,
data = treated_cases,
weights = sampling_weight

)

These models return a warning that there is a non-integer number of successes. This is normal
and not a concern when estimating logistic regression models with weights.

2) Predict

We then predict the probability of 𝑌 under each treatment condition, using type =
"response" to predict the probability of 𝑌 instead of the log odds of 𝑌 .

11

logistic_predicted_potential_outcomes <- all_cases |>
mutate(

yhat1 = predict(
logistic_model_for_y1,
newdata = all_cases,
type = "response"

),
yhat0 = predict(
logistic_model_for_y0,
newdata = all_cases,
type = "response"

),
effect = yhat1 - yhat0

)

A tibble: 7,688 x 6
id sampling_weight a yhat1 yhat0 effect

<dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 1 0.989 untreated 0.254 0.0861 0.168
2 2 0.999 treated 0.726 0.562 0.164
3 3 0.967 untreated 0.177 0.0261 0.151
i 7,685 more rows

3) Aggregate

We can then aggregate the predicted potential outcomes to estimate the average treatment
effect over all cases (ATT),

logistic_ate_estimate <- logistic_predicted_potential_outcomes |>
summarize(ate = weighted.mean(effect, w = sampling_weight)) |>
print()

A tibble: 1 x 1
ate

<dbl>
1 0.204

or among those who were factually treated or untreated,

12

logistic_predicted_potential_outcomes |>
group_by(a) |>
summarize(conditional_average_effect = weighted.mean(effect, w = sampling_weight))

A tibble: 2 x 2
a conditional_average_effect
<chr> <dbl>

1 treated 0.240
2 untreated 0.195

or among any subpopulation by grouping by any confounding variables.

We estimate that completing college increases the probability of having a college-educated
by 0.204. This causal conclusion relies both on our causal assumptions (the DAG) and our
statistical assumptions (the chosen model).

Machine learning outcome models for causal inference

Outcome models for causal inference just need to be input-output machines:

• input �⃗� and a treatment value 𝑎
• output ̂𝑌 𝑎 = E(𝑌 ∣ 𝐴 = 𝑎, �⃗�)

Machine learning estimators can be used as the algorithm to make the predictions.

A promising story

Many researchers increasingly turn to machine learning estimators in the service of causal
inference. Some of the early advances involved direct plug-ins, where a machine learning
function

̂𝑓 ∶ {𝐴, �⃗�} → ̂𝑌

is learned to map values of treatment 𝐴 and confounders �⃗� to a predicted outcome ̂𝑌 . Viewed
this way, one can use any machine learning approach as an estimator of an average causal
effect.

Ê(𝑌 1 − 𝑌 0) = 1
𝑛 ∑

𝑖
(̂𝑓(1, ⃗𝑥𝑖) − ̂𝑓(0, ⃗𝑥𝑖))

13

A widely-cited early application was Hill (2011), which used Bayesian Additive Regression
Trees (BART) to model the response surface and then predict to estimate average causal effects
and many conditional average effects. By outsourcing the functional form to an algorithm,
approaches like this free the researcher to focus on the causal question and the DAG rather than
the assumed functional form of statistical relationships. These algorithmic approaches often
performed well in competitions where statisticians applied a series of estimators to simulated
data to see who would come closest to the true causal effects (known in simulation, see Dorie et
al. 2019). Recently, new developments have expanded tree and forest estimators to explicitly
address causal questions (e.g., Athey & Imbens 2016).

A warning example

There are many reasons to be optimistic, but one also must be cautious: it is also possible for
a machine learning model that predict 𝑌 well to be a poorly performing estimator of a causal
effect.

• there may be unmeasured confounding
• the regularization in machine learning models can induce a large bias
• to predict 𝑌 1, the model is trained on treated units. But untreated units may have a

very different distribution of �⃗�

As an example, using our simulated data from above, suppose a researcher models 𝑌 ∣ 𝐴, �⃗�
using a regression tree, which they plan to use to predict 𝑌 1 and 𝑌 0 for all cases.

library(rpart)
set.seed(90095)
fit <- rpart(
y ~ a + sex + race + mom_educ + dad_educ + log_parent_income +

log_parent_wealth + test_percentile,
data = all_cases

)
rpart.plot::rpart.plot(fit)

14

https://doi.org/10.1198/jcgs.2010.08162
https://projecteuclid.org/journals/statistical-science/volume-34/issue-1/Automated-versus-Do-It-Yourself-Methods-for-Causal-Inference/10.1214/18-STS667.full
https://projecteuclid.org/journals/statistical-science/volume-34/issue-1/Automated-versus-Do-It-Yourself-Methods-for-Causal-Inference/10.1214/18-STS667.full
https://doi.org/10.1073/pnas.1510489113

a = untreated

test_percentile < 69 test_percentile < 69

0.21
100%

0.14
81%

0.11
71%

0.33
10%

0.52
19%

0.4
8%

0.61
11%

yes no

There are some concerns with this tree:

1. Most variables were never used in splitting
2. It split on test_percentile, but only coarsely: each leaf contains a wide range of

test_percentile values

As a result, each leaf contains a wide range of values on the confounding variables �⃗�. If you
imagine predicting 𝑌 0 and 𝑌 1 for a new unit with �⃗� = ⃗𝑥, the untreated cases and the treated
cases that are averaged into these predictions will have �⃗� values that are widely ranging, not
equal to �⃗� and not equally distributed between the treated and the untreated.

all_cases |>
filter(test_percentile < 69) |>
ggplot(aes(x = test_percentile, fill = a)) +
geom_density(alpha = .4) +
theme_minimal() +
ylab("Density") +
xlab("Test Percentile") +
scale_fill_discrete(

name = "Treatment",
labels = c("Treated:\nCompleted college","Untreated:\nDid not complete college")

) +
theme(legend.key.height = unit(.4,"in")) +
ggtitle(

"Coarse leaves do not fully adjust for confounders",
subtitle = "Treated and untreated units used to predict for a new unit with\ntest percentile below 69 have different distributions of that confounder."

)

15

0.00

0.01

0.02

0.03

0 20 40 60
Test Percentile

D
en

si
ty

Treatment

Treated:
Completed college

Untreated:
Did not complete college

Treated and untreated units used to predict for a new unit with
test percentile below 69 have different distributions of that confounder.

Coarse leaves do not fully adjust for confounders

There exist work-around solutions for this problem, such as methods to carry out further con-
founder adjustment within leaves to better estimate causal effects (Brand et al. 2021). These
problems and solutions from causal inference point to a general fact: off-the-shelf algorithms
to predict 𝑌 typically involve data-driven choices (e.g., prune the tree) that lead to better
predictions of 𝑌 , but in some cases those same choices can lead to worse estimates of causal
effects (𝑌 1 − 𝑌 0).

In the coming weeks, we will learn how to make better use of machine learning algorithms for
causal inference by combining treatment models and outcome models.

16

https://doi.org/10.1177/0081175021993503

	Prediction to describe with non-probability samples
	Real example: Xbox survey
	Takeaways: Prediction to describe

	Causal inference: Example on paper
	Causal inference with OLS: Simulated example in code
	1) Model
	2) Predict
	3) Aggregate

	Logistic regression: A realistic simulated example
	Data-based simulation
	1) Model
	2) Predict
	3) Aggregate

	Machine learning outcome models for causal inference
	A promising story
	A warning example

