
Statistical Uncertainty: Bootstrap and Beyond

Here are slides and a PDF version of this page. Notation and ideas on this page
loosely draw on Efron & Hastie (2016) Ch 10–11.

As researchers adopt algorithmic estimation methods for which analytical standard errors do
not exist, methods to produce standard errors by resampling become all the more important.
We will discuss the bootstrap for simple random samples and extensions to allow resampling-
based standard error estimates in complex survey samples.

library(tidyverse)
library(scales)
library(foreach)
set.seed(90095)

A motivating problem

Out of the population of baseball salaries on Opening Day 2023, imagine that we have a sample
of 10 Dodger players.

population <- read_csv("data/baseball_population.csv")
sample <- population |>
filter(team == "L.A. Dodgers") |>
sample_n(size = 10) |>
select(player, team, salary)

We calculate the mean salary among the sampled Dodgers to be $3.8 million. How much
should we trust this estimate?

For the sake of discussion, we provide the following information.

# A tibble: 3 x 2
`Salary Among Sampled Dodgers` Value
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<chr> <dbl>
1 sample_mean 3829119.
2 sample_standard_deviation 6357851.
3 sample_size 10

Classical inference

To know how confident to be in our sample-based estimate, we need to reason about why our
sample-based estimate might differ from the true (but unknown) population parameter. Let

̂𝜇 denote our estimate for the sample mean of 𝑌 .

̂𝜇 = 1
𝑛 ∑

𝑖
𝑌𝑖

Across repeated samples from the population, the estimate ̂𝜇 equals the population mean on
average but differs in any particular sample due to random sampling variance. The sample
variance of the mean has a known formula.

𝑉 ( ̂𝜇) = 𝑉 ( 1
𝑛 ∑

𝑖
𝑌𝑖) = 1

𝑛2 ∑
𝑖

𝑉 (𝑌𝑖) = 𝑉 (𝑌 )
𝑛

The sample-to-sample variance of ̂𝜇 will be greater to the degree that 𝑌 varies substantially
across individuals in the population (larger 𝑉 (𝑌 )), and will be smaller to the degree that many
individuals are included in the sample (larger 𝑛).

You might be more familiar with this equation expressed as the standard deviation of the
estimator, sometimes referred to as the standard error, which is the square root of the variance
of the estimator,

SD( ̂𝜇) = √V( ̂𝜇) = SD(𝑌 )√𝑛
where SD() is the standard deviation of 𝑌 across individuals in the population.

From the Central Limit Theorem, we know that even if 𝑌 is not Normally distributed the
sample mean of 𝑌 converges to a Normal distribution as the sample size grows. Because we have
formulas for these parameters, we can write down a formula for that sampling distribution.

̂𝜇 → Normal (Mean = E(𝑌 ), SD = SD(𝑌 )√𝑛 )
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The graph below visualizes the sampling variability of the sample mean. Across repeated sam-
ples, the sample mean ̂𝜇 is normally distributed about its true population value. The middle
95% of sample estimates ̂𝜇 fall within a region that can be derived with known formulas,

True

Population

Value

Middle 95% of Sample−Based Estimates µ̂

Estimate is normally distributed over
hypothetical repeated samples by the

Central Limit Theorem because
the estimate is a sample mean

µ − Φ−1(0.975)SD(µ̂) µ µ + Φ−1(0.975)SD(µ̂)

where Φ−1() is the inverse CDF of the standard Normal distribution.

You might be concerned: can a Normal distribution be a good approximation when Dodger
player salaries are highly right-skewed? After all this is the distribution of Dodger player
salaries.
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But the sample mean among 10 sampled Dodgers is actually quite close to a normal sampling
distribution. This is because of the Central Limit Theorem.
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Plug-in estimators

We have a formula for the standard deviation of the sample mean, but it involves the term
SD(𝑌 ) which is the unknown population standard deviation of 𝑌 . It is common to plug in the
sample estimate of this value in order to arrive at a sample estimate of the standard deviation
of the estimator.

ŜD( ̂𝜇) = ŜD(𝑌 )√𝑛 = √
1

𝑛−1 ∑𝑖(𝑌𝑖 − ̄𝑌 )2

𝑛

The idea of a plug-in estimator may seem obvious, but soon we will see that the step at
which plug-ins occur changes dramatically when we move to resampling methods for statistical
inference.

Classical confidence intervals

A 95% confidence interval ( ̂𝜇Lower, ̂𝜇Upper) is an interval that has the property that across
repeated samples the probability that ̂𝜇Lower < 𝜇 < ̂𝜇Upper is 0.95. One way to think about
this is that two properties should hold: the probability that the lower limit is too high and
the probability that the upper limit is too low are each 0.025.

P( ̂𝜇Lower > 𝜇) = .025
P( ̂𝜇Upper < 𝜇) = .025

You may know from statistics that a 95% confidence interval for the sample mean can be
derived as follows.

̂𝜇 ± Φ−1(.975)ŜD( ̂𝜇)
where Φ−1(.975) is the value 1.96 that you might look up in the back of a statistics textbook.
We can show that these confidence limits have the desired properties. For example, taking the
lower limit:

P ( ̂𝜇Lower > 𝜇)
= P ( ̂𝜇 − Φ−1(.975)ŜD( ̂𝜇) > 𝜇)
= P ( ̂𝜇 − 𝜇 > Φ−1(.975)ŜD( ̂𝜇))

= P ( ̂𝜇 − 𝜇
ŜD( ̂𝜇)

> Φ−1(.975))

= .025
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where the last line holds because �̂�−𝜇
SD(�̂�) follows a standard Normal distribution. The proof for

the upper limit is similar.

Across repeated samples, a 95% confidence interval constructed in this way should contain the
true mean 95% of the time. We can visualize this behavior by taking repeated samples of 10
Dodger players from our data.
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Confidence intervals derived by math

In this particular simulation, we have slight undercoverage and the upper confidence limit is
often the one that is incorrect. These problems may arise because our asymptotic normality
of mean salaries is an imperfect approximation at a sample size of 𝑛 = 10.

Analytic vs computational inference procedures

Analytical confidence intervals (derived by math) are the default for many researchers. Yet the
exercise above reveals some of their shortcomings. First, there is a lot of math! Second, despite
the math we still relied on the plug-in principle: for unknown quantities such as SD(𝑌 ) we
plug in sample-based estimates ŜD(𝑌 ) and act as though these were known. Third, our results
may still yield imperfect coverage because underlying assumptions may be only approximately
met. For example, our confidence intervals may have undercovered because the asymptotics
of the Central Limit Theorem are unreliable at 𝑛 = 10.

Now suppose you had a complicated data science approach, such as a predicted value ̂𝑌�⃗� =
Ê(𝑌 ∣ �⃗� = ⃗𝑥) from a LASSO regression. How would you place a confidence interval on that
predicted value?
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Computational inference procedures take a different approach. These procedures focus on a
generic estimator 𝑠() applied to data. Instead of deriving properties of the estimator by math,
computational approaches seek to simulate what would happen when 𝑠() is applied to samples
from the population, often by using a plug-in principle at an earlier step.

The estimator function 𝑠()

At the core of a resampling-based inference procedure is a broad sense of how our estimate
comes to be. First, the world has some cumulative distribution function 𝐹 over data that
could be generated. A particular sample data is drawn from the probability distribution of
the world. The researcher then applies an estimator function 𝑠() that takes in data and
returns an estimate 𝑠(data).

𝐹 → data → 𝑠(data)

In our baseball example, the estimator function is the sample mean of the salary variable.

estimator <- function(data) {
data |>

summarize(estimate = mean(salary)) |>
pull(estimate)

}

We would like to repeatedly simulate data from the world and see the performance of the esti-
mator. But this is only possible in illustrations like the baseball example where the population
data are known. When 𝐹 is unknown and we only see one data, we need a new procedure.

The nonparametric bootstrap

The nonparametric bootstrap simulates repeated-sample behavior by a plug-in principle.

1. Plug in the empirical distribution ̂𝐹 of our sample data as an estimate of the true
distribution 𝐹 for the unobserved full population of data

2. Generate a bootstrap sample data∗ by sampling from our empirical data with replace-
ment.

3. Generate an estimate 𝑠(data∗) using the bootstrap data.
4. Repeat steps (2) and (3) many times to generate a large number 𝐵 of bootstrap replicate

estimates.

Visually, this procedure is analogous to the above.

̂𝐹 → data∗ → 𝑠(data∗)
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Nonparametric bootstrap standard errors

In classical statistics, the standard error of an estimator is typically a mathematical expression
derived for that particular estimator and then estimated by the plug-in principle. For example,
the standard error of the mean is SD( ̂𝜇) = SD(𝑌 )/√𝑛.

With the bootstrap, we avoid this altogether because we have 𝐵 bootstrap replicate estimates.
We can estimate the standard deviation of the estimator over repeated samples by the empirical
standard deviation across bootstrap replicates.

ŜD(𝑠) = 1
𝐵 − 1

𝐵
∑
𝑟=1

(𝑠(data∗
𝑟) − 𝑠(data∗

•))
2

where 𝑠(data∗
•) is the mean of the estimate across the bootstrap samples. Note that just like

the analytic standard errors, these have also relied on a plug-in principle: we plugged in the
empirical distribution ̂𝐹 for the population distribution 𝐹 when generating bootstrap samples
from our empirical data instead of actual samples from the population.

In our baseball example, here is our sample of 10 Dodger players.

# A tibble: 10 x 3
player team salary
<chr> <chr> <dbl>

1 Barnes, Austin L.A. Dodgers 3500000
2 Reyes, Alex* L.A. Dodgers 1100000
3 Betts, Mookie L.A. Dodgers 21158692
4 Vargas, Miguel L.A. Dodgers 722500
5 May, Dustin L.A. Dodgers 1675000
6 Bickford, Phil L.A. Dodgers 740000
7 Jackson, Andre L.A. Dodgers 722500
8 Thompson, Trayce L.A. Dodgers 1450000
9 Pepiot, Ryan* L.A. Dodgers 722500
10 Peralta, David L.A. Dodgers 6500000

The code below generates a bootstrap sample from these 10 players by sampling 10 players
with replacement. You will see that some players in the original sample do not appear, and
others appear more than once.

sample |>
slice_sample(prop = 1, replace = TRUE)
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# A tibble: 10 x 3
player team salary
<chr> <chr> <dbl>

1 Betts, Mookie L.A. Dodgers 21158692
2 Peralta, David L.A. Dodgers 6500000
3 Barnes, Austin L.A. Dodgers 3500000
4 Pepiot, Ryan* L.A. Dodgers 722500
5 Jackson, Andre L.A. Dodgers 722500
6 May, Dustin L.A. Dodgers 1675000
7 Reyes, Alex* L.A. Dodgers 1100000
8 May, Dustin L.A. Dodgers 1675000
9 Vargas, Miguel L.A. Dodgers 722500
10 Peralta, David L.A. Dodgers 6500000

The code below carries out 500 bootstrap samples and estimates the sample mean in each
one.

bootstrap_estimates <- foreach(r = 1:1000, .combine = "c") %do% {
sample |>

# Draw a bootstrap sample
slice_sample(prop = 1, replace = TRUE) |>
# Apply the estimator
estimator()

}

The figure below shows how that the bootstrap distribution of the estimator compares to
the actual sampling distribution of the estimator (known in this case since the population is
known).
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Estimator distribution over actual
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Estimator distribution over bootstrap
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The bootstrap distribution is more heaped on 10 distinct salary values: the particular 10
Dodger player salaries included in our sample. When the variable being summarized takes
continuous values, it will generally be more discretized in the bootstrap setting because there
are only the sample size 𝑛 distinct values instead of the population size 𝑁 of distinct values.
Otherwise, the two distributions are similar.

The bootstrap estimate of the standard error in this case is

bootstrap_estimates |> sd()

[1] 1965073

which is 86% of the size of the theoretical standard error of 2.2969632 × 106. Like all sample-
based analogs to theoretical standard errors, the bootstrap estimate of the standard error can
itself be sensitive to sampling variability.

Bootstrap confidence intervals

The discussion above has focused on using the bootstrap to estimate standard errors. There
are many methods to construct confidence intervals using bootstrap procedures. Two of the
most common are the Normal approximation method and the percentile method.
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Normal approximation

The beginning of this page reviewed classical statistics in which we routinely rely on the
Central Limit Theorem which ensures that sample mean estimators are asymptotically Normal.
Likewise with the bootstrap, if we believe that 𝑠(data) has a Normal sampling distribution,
then we can construct a confidence interval by the Normal approximation with the bootstrap
estimate of the standard error.

𝑠(data) ± Φ−1(.975)SD(𝑠(data∗))

estimator(sample) + c(-1,1) * qnorm(.975) * sd(bootstrap_estimates)

[1] -22353.11 7680591.51

Percentile method

The bootstrap also offers another way to calculate the confidence interval: the middle 95% of
the bootstrap estimates.

quantile(bootstrap_estimates, probs = c(.025, .975))

2.5% 97.5%
1103406 8216408

The percentile method can work better than the Normal approximation method in cases where
normality does not hold. For example, in the beginning of this page we used analytic intervals
that seemed imperfect in part because the Central Limit Theorem had not adequately yielded
normality at a sample size of 10.
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Confidence intervals by the bootstrap percentile method

Bootstrap for machine learning algorithms

Suppose a researcher carries out the following procedure.

1. Sample 𝑛 units from the population
2. Learn an algorithm ̂𝑓 ∶ �⃗� → 𝑌 to minimize squared error
3. Report a prediction Ê(𝑌 ∣ �⃗� = ⃗𝑥) = ̂𝑓( ⃗𝑥)

How would the researcher use the bootstrap to carry out this process?

1. Draw a bootstrap sample data∗ of size 𝑛
2. Learn the algorithm ̂𝑓∗ in the bootstrap sample
3. Store the bootstrap estimate ̂𝑓∗( ⃗𝑥)

Then the researcher could create a confidence interval with either the Normal approximation
or the percentile method. Note that the bootstrap confidence interval may have undercoverage
if the estimator is biased; see the words of warning at the end of this page.

Discussion: What belongs in 𝑠()?

In each example, describe the steps the researcher might use to bootstrap this estimate while
capturing all sources of uncertainty.
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1. A researcher first truncates the values of a skewed predictor variable 𝑥 at the 1st and
99th percentile. Then the researcher learns a regression model and reports ̂𝛽.

2. A researcher first uses cross-validation to select the tuning parameter 𝜆 for ridge regres-
sion. Then, they estimate ridge regression with the chosen 𝜆 value and make a prediction

̂𝑓( ⃗𝑥) at some predictor value ⃗𝑥 of interest.
3. A researcher first learns a prediction function ̂𝑓 ∶ �⃗� → 𝑌 and then sees which subgroup

⃗𝑥 has the highest predicted value ̂𝑓( ⃗𝑥), which the researcher reports.

Answers

Many steps of the analysis involve uncertainty. It can be ideal to include them all in
your bootstrap! Write your estimator function to take in your raw data and return an
estimate. The estimator function would include steps like truncating predictors at sample
quantiles, choosing tuning parameters, and choosing subgroups of interest on which to
focus.

Beyond simple random samples

The bootstrap in its simplest form is designed for simple random samples. Straightforward
generalizations make it possible to move beyond simple random samples to more complex
sampling designs.

Stratified bootstrap

Suppose we draw a sample of players stratified by team: 10 players per team. No matter which
random sample is drawn, there will always be 10 Dodgers, 10 Angels, 10 Yankees, and so on.
Stratified sampling is often a more efficient estimator than simple random sampling, and our
estimator should reflect that!

As an example, suppose we have a stratified sample of 10 players per team.

stratified_sample <- population |>
group_by(team) |>
slice_sample(n = 10) |>
ungroup()

We would generate a stratified bootstrap sample1 by stratifying by team, exactly as the data
were generated.

1Called the “multi-sample bootstrap” in Efron & Hastie.
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stratified_bootstrap_sample <- stratified_sample |>
group_by(team) |>
slice_sample(prop = 1, replace = T)

Stratified bootstrapping can be important. Using our baseball example, suppose our estimator
is the predicted mean salary of the Dodgers from a linear regression.

estimator <- function(data) {
ols <- lm(salary ~ team_past_salary, data = data)
to_predict <- population |>

filter(team == "L.A. Dodgers") |>
distinct(team_past_salary)

predicted <- predict(ols, newdata = to_predict)
return(predicted)

}

We get different estimates if we carry out simple vs stratified bootstrap sampling.
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In a stratified sample, you need a stratified bootstrap.

Cluster bootstrap

Suppose we draw a sample of players clustered by team: all players on 10 sampled teams.
Clustered sampling is often less expensive than simple random sampling because it can be easier
for the person carrying out the survey. This often comes at a cost of statistical efficiency.
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As an example, suppose we have a clustered sample of 10 teams.

clustered_sample <- population |>
distinct(team) |>
slice_sample(n = 10) |>
left_join(population, by = join_by(team))

We would generate a clustered bootstrap sample by resampling teams instead of players,
exactly as the data were sampled.

chosen_teams <- clustered_sample |>
distinct(team) |>
slice_sample(prop = 1, replace = T)

clustered_bootstrap_sample <- foreach(i = 1:nrow(chosen_teams), .combine = "rbind") %do% {
chosen_teams[i,] |>

left_join(clustered_sample, by = join_by(team))
}

As before, we get different estimated standard errors if we carry out clustered bootstrap
sampling vs standard bootstrap sampling.
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In a clustered sample, you need a clustered bootstrap.
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Complex survey samples

Many surveys involve complex samples, such as samples stratified by state and then clustered in
regions within states. Often the variables that define sampling strata or clusters are geographic,
and therefore they are often redacted from the data made available to researchers due to privacy
concerns.

Thankfully, many surveys make replicate weights available to researchers. The goal of
replicate weights is to enable you to resample the data in a way that mimics the (hidden) ways
in which the sample was originally drawn. The rest of this section walks through the use of
replicate weights, first in a hypothetical example and then in real data.

When we download data, we typically download a column of weights. For simplicity, suppose
we are given a sample of four people. The weight column tells us how many people in
the population each person represents. The employed column tells us whether each person
employed.

name weight employed
1 Luis 4 1
2 William 1 0
3 Susan 1 0
4 Ayesha 4 1

If we take an unweighted mean, we would conclude that only 50% of the population is em-
ployed. But with a weighted mean, we would conclude that 80% of the population is employed!
This might be the case if the sample was designed to oversample people at a high risk of un-
employment.

Estimator Math Example Result

Unweighted mean = ∑𝑛
𝑖=1 𝑌𝑖
𝑛 = 1+0+0+1

4 = 50% employed
Weighted mean = ∑𝑛

𝑖=1 𝑤𝑖𝑌𝑖
∑𝑛

𝑖=1 𝑤𝑖
= 4∗1+1∗0+1∗0+4∗1

4+1+1+4 = 80% employed

In R, the weighted.mean(x, w) function will calculate weighted means where x is an argument
for the outcome variable and w is an argument for the weight variable.

When you face a complex survey sample, those who administer the survey might provide

• a vector of 𝑛 weights for making a point estimate
• a matrix of 𝑛 × 𝑘 replicate weights for making standard errors
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By providing 𝑘 different ways to up- and down-weight various observations, the replicate
weights enable you to generate 𝑘 estimates that vary in a way that mimics how the estimator
might vary if applied to different samples from the population. For instance, our employment
sample might come with 3 replicate weights.

name weight employed repwt1 repwt2 repwt3
1 Luis 4 1 3 5 3
2 William 1 0 1 2 2
3 Susan 1 0 3 1 1
4 Ayesha 4 1 5 3 4

The procedure to use replicate weights depends on how they are constructed. Often, it is
relatively straightforward:

• use weight to create a point estimate ̂𝜏
• use repwt* to generate 𝑘 replicate estimates ̂𝜏∗

1 , … , ̂𝜏∗
𝑘

• calculate the standard error of ̂𝜏 using the replicate estimates ̂𝜏∗. The formula will
depend on how the replicate weights were constructed, but it will likely involve the
standard deviation of the ̂𝜏∗ multiplied by some factor

• construct a confidence interval2 by a normal approximation

(point estimate) ± 1.96 ∗ (standard error estimate)

In our concrete example, the point estimate is 80% employed. The replicate estimates are 0.67,
0.73, 0.70. Variation across the replicate estimates tells us something about how the estimate
would vary across hypothetical repeated samples from the population.

Computational strategy for replicate weights

Using replicate weights can be computationally tricky! It becomes much easier if you write an
estimator() function. Your function accepts two arguments

• data is the tibble containing the data
• weight_name is the name of a column containing the weight to be used (e.g., “repwt1”)

Example. If our estimator is the weighted mean of employment,

2If we hypothetically drew many complex survey samples from the population in this way, an interval generated
this way would contain the true population mean 95% of the time.
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estimator <- function(data, weight_name) {
data |>

summarize(
estimate = weighted.mean(
x = employed,
# extract the weight column
w = sim_rep |> pull(weight_name)

)
) |>
# extract the scalar estimate
pull(estimate)

}

In the code above, sim_rep |> pull(weight_name) takes the data frame sim_rep and ex-
tracts the weight variable that is named weight_name. There are other ways to do this also.

We can now apply our estimator to get a point estimate with the main sampling weight,

estimate <- estimator(data = sim_rep, weight_name = "weight")

which yields the point estimate 0.80. We can use the same function to produce the replicate
estimates,

replicate_estimates <- c(
estimator(data = sim_rep, weight_name = "repwt1"),
estimator(data = sim_rep, weight_name = "repwt2"),
estimator(data = sim_rep, weight_name = "repwt3")

)

yielding the three estimates: 0.67, 0.73, 0.70. In real data, you will want to apply this in a
loop because there may be dozens of replicate weights.

The standard error of the estimator will be some function of the replicate estimates, likely
involving the standard deviation of the replicate estimates. Check with the data distributor
for a formula for your case. Once you estimate the standard error, a 95% confidence interval
can be constructed with a Normal approximation, as discussed above.

Application in the CPS

Starting in 2005, the CPS-ASEC samples include 160 replicate weights. If you download
replicate weights for many years, the file size will be enormous. We illustrate the use of
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replicate weights with a question that can be explored with only one year of data: among
25-year olds in 2023, how did the proportion holding four-year college degrees differ across
those identifying as male and female?

We first load some packages, including the foreach package which will be helpful when looping
through replicate weights.

library(tidyverse)
library(haven)
library(foreach)

To answer our research question, we download 2023 CPS-ASEC data including the variables
sex, educ, age, the weight variable asecwt, and the replicate weights repwtp*.

cps_data <- read_dta("data_raw/cps_00079.dta")

We then define an estimator to use with these data. It accepts a tibble data and a character
weight_name identifying the name of the weight variable, and it returns a tibble with two
columns: sex and estimate for the estimated proportion with a four-year degree.

estimator <- function(data, weight_name) {
data |>

# Define focal_weight to hold the selected weight
mutate(focal_weight = data |> pull(weight_name)) |>
# Restrict to those age 25+
filter(age >= 25) |>
# Restrict to valid reports of education
filter(educ > 1 & educ < 999) |>
# Define a binary outcome: a four-year degree
mutate(college = educ >= 110) |>
# Estimate weighted means by sex
group_by(sex) |>
summarize(estimate = weighted.mean(
x = college,
w = focal_weight

))
}

We produce a point estimate by applying that estimator with the asecwt.
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estimate <- estimator(data = cps_data, weight_name = "asecwt")

# A tibble: 2 x 2
sex estimate
<dbl+lbl> <dbl>

1 1 [male] 0.369
2 2 [female] 0.397

Using the foreach package, we apply the estimator 160 times—once with each replicate
weight—and use the argument .combine = "rbind" to stitch results together by rows.

library(foreach)
replicate_estimates <- foreach(r = 1:160, .combine = "rbind") %do% {
estimator(data = cps_data, weight_name = paste0("repwtp",r))

}

# A tibble: 320 x 2
sex estimate
<dbl+lbl> <dbl>

1 1 [male] 0.368
2 2 [female] 0.396
3 1 [male] 0.371
4 2 [female] 0.400
5 1 [male] 0.371
6 2 [female] 0.397
7 1 [male] 0.369
8 2 [female] 0.397
9 1 [male] 0.370
10 2 [female] 0.398
# i 310 more rows

We estimate the standard error of our estimator by a formula

StandardError( ̂𝜏) =
√√√
⎷

4
160

160
∑
𝑟=1

( ̂𝜏∗𝑟 − ̂𝜏)2

where the formula comes from the survey documentation. We carry out this procedure within
groups defined by sex, since we are producing estimate for each sex.
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standard_error <- replicate_estimates |>
# Denote replicate estimates as estimate_star
rename(estimate_star = estimate) |>
# Merge in the point estimate
left_join(estimate,

by = join_by(sex)) |>
# Carry out within groups defined by sex
group_by(sex) |>
# Apply the formula from survey documentation
summarize(standard_error = sqrt(4 / 160 * sum((estimate_star - estimate) ^ 2)))

# A tibble: 2 x 2
sex standard_error
<dbl+lbl> <dbl>

1 1 [male] 0.00280
2 2 [female] 0.00291

Finally, we combine everything and construct a 95% confidence interval by a Normal approx-
imation.

result <- estimate |>
left_join(standard_error, by = "sex") |>
mutate(ci_min = estimate - 1.96 * standard_error,

ci_max = estimate + 1.96 * standard_error)

# A tibble: 2 x 5
sex estimate standard_error ci_min ci_max
<dbl+lbl> <dbl> <dbl> <dbl> <dbl>

1 1 [male] 0.369 0.00280 0.364 0.375
2 2 [female] 0.397 0.00291 0.391 0.403

We use ggplot() to visualize the result.

result |>
mutate(sex = as_factor(sex)) |>
ggplot(aes(

x = sex,
y = estimate,
ymin = ci_min,
ymax = ci_max,
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label = scales::percent(estimate)
)) +
geom_errorbar(width = .2) +
geom_label() +
scale_x_discrete(

name = "Sex",
labels = str_to_title

) +
scale_y_continuous(name = "Proportion with 4-Year College Degree") +
ggtitle(

"Sex Disparities in College Completion",
subtitle = "Estimates from the 2023 CPS-ASEC among those age 25+"

)
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We conclude that those identifying as female are more likely to hold a college degree. Because
we can see the confidence intervals generated using the replicate weights, we are reasonably
confident in the statistical precision of our point estimates.

A word of warning

The bootstrap is a powerful tool, but there are notable cases in which it fails.

First, all frequentist confidence intervals that are based solely on sampling variance may suffer
undercoverage if applied to biased estimators. For example, many machine learning algorithms
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induce bias through regularization. This means that even if we correctly approximate sampling
variance, the center of our confidence intervals may be systematically misaligned from the true
population parameter, yielding undercoverage.

Second, the bootstrap can exhibit unexpected performance with statistics such as the max-
imum or minimum value, since these statistics can be sensitive to a particular data point.
Taking the maximum as an example, the value max( ⃗𝑦∗) in a bootstrap sample will never be
higher than max( ⃗𝑦) in the sample from which that bootstrap was drawn. The entire bootstrap
distribution of max( ⃗𝑦∗) will be at or below the original estimate of max( ⃗𝑦). Like the max or
min, quantiles of ⃗𝑦 can also lead to unexpected bootstrap behavior. Generally the bootstrap
will have the best performance for statistics such as the mean for which no particular unit
plays an especially determining role.
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