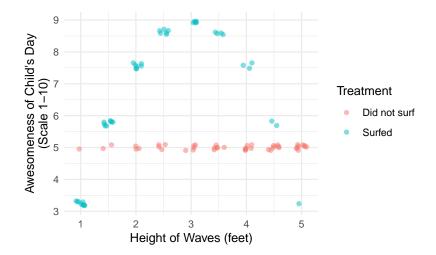
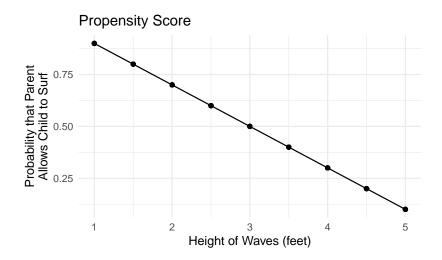
Doubly-Robust Estimation¹

lan Lundberg Soc 212b ilundberg.github.io/soc212b

Winter 2025

¹Especially today, slides are a high-level overview and we will rely on the website for some technical things.

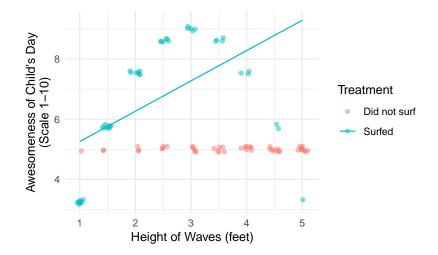




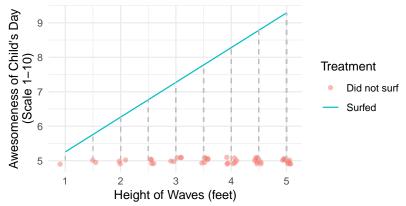
Child:

How much more awesome would my day have been if I had surfed on the days when my parents didn't let me?

$$ATC = \frac{1}{n_0} \sum_{i:A_i=0} (Y_i^1 - Y_i^0)$$

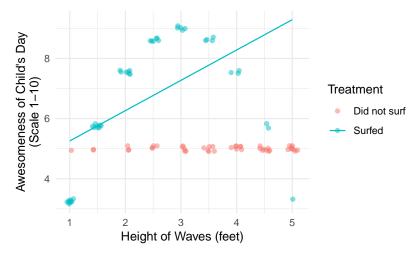


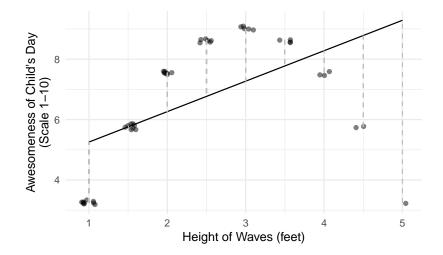
ATC: On average, awesomness would increase by 2.94 if I had surfed on the days I wasn't allowed.

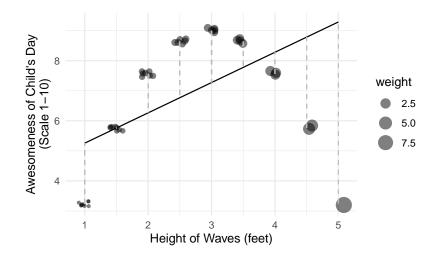


To discuss:

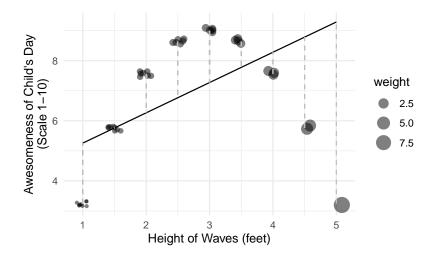
- In what sense is this line best-fit to the wrong goal?
- ► How important is the error at each x-value?

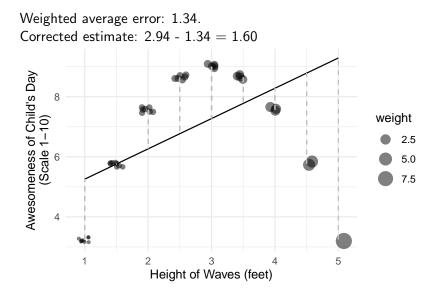






Weighted average error: 1.34.





Doubly-robust estimation: Summary

For the ATC:

- ▶ Predict \hat{Y}^1
- Among treated cases,
 - Weight by $\frac{\hat{P}(A=1)}{\hat{P}(A=0)}$
 - Take weighted average error: $\hat{Y}^1 Y$
 - This is a bias correction: model was fit at x-values of treated cases, target to predict is x-values of untreated cases
- Among untreated cases, take average \hat{Y}^1
- ► Then subtract the bias correction

Three estimators of $\hat{E}(Y^a)$

What is right when $\hat{g}(a, \vec{x}) \rightarrow E(Y \mid A = a, \vec{X} = \vec{x})$? What is right when $\hat{m}(a, \vec{x}) \rightarrow P(A = a \mid \vec{X} = \vec{x})$?

$$\begin{aligned} \hat{\tau}_{\text{Outcome}}(a) &= \frac{1}{n} \sum_{i} \hat{g}(a, \vec{X}_{i}) \\ \hat{\tau}_{\text{Treatment}}(a) &= \frac{1}{\sum_{i:A_{i}=a} \frac{1}{\hat{m}(A_{i}, \vec{X}_{i})}} \sum_{i:A_{i}=a} \frac{Y_{i}}{\hat{m}(A_{i}, \vec{X}_{i})} \\ \hat{\tau}_{\text{AIPW}}(a) &= \frac{1}{n} \sum_{i} \hat{g}(a, \vec{X}_{i}) \\ &- \frac{1}{\sum_{i:A_{i}=a} \frac{1}{\hat{m}(A_{i}, \vec{X}_{i})}} \sum_{i:A_{i}=a} \frac{\hat{g}(A_{i}, X_{i}) - Y_{i}}{\hat{m}(A_{i}, \vec{X}_{i})} \end{aligned}$$

With \hat{g} as the outcome model and \hat{m} as the treatment model:

$$\hat{\tau}_{\mathsf{Outcome}}(a) \quad \hat{\tau}_{\mathsf{Treatment}}(a) \quad \hat{\tau}_{\mathsf{AIPW}}(a)$$

when \hat{g} and \hat{m} are correct

$$\hat{ au}_{Outcome}(a) \quad \hat{ au}_{Treatment}(a) \quad \hat{ au}_{AIPW}(a)$$
 when \hat{g} and \hat{m} are correct \checkmark

$$\hat{\tau}_{Outcome}(a) \quad \hat{\tau}_{Treatment}(a) \quad \hat{\tau}_{AIPW}(a)$$

when \hat{g} and \hat{m} are correct $\checkmark \qquad \checkmark$

$$\hat{\tau}_{\text{Outcome}}(a)$$
 $\hat{\tau}_{\text{Treatment}}(a)$ $\hat{\tau}_{\text{AIPW}}(a)$
when \hat{g} and \hat{m} are correct \checkmark \checkmark \checkmark

With \hat{g} as the outcome model and \hat{m} as the treatment model:

$$\begin{array}{c} \hat{\tau}_{\text{Outcome}}(a) \quad \hat{\tau}_{\text{Treatment}}(a) \quad \hat{\tau}_{\text{AIPW}}(a) \\ \text{when } \hat{g} \text{ and } \hat{m} \text{ are correct} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \\ \text{when only } \hat{g} \text{ is correct} \qquad \checkmark \qquad \checkmark \qquad \times \qquad \end{array}$$

	$\hat{\tau}_{Outcome}(a)$	$\hat{ au}_{Treatment}(\mathbf{a})$	$\hat{ au}_{AIPW}(a)$
when \hat{g} and \hat{m} are correct	\checkmark	\checkmark	\checkmark
when only \hat{g} is correct	\checkmark	×	\checkmark

With \hat{g} as the outcome model and \hat{m} as the treatment model:

 $\begin{array}{ccc} \hat{\tau}_{\text{Outcome}}(a) & \hat{\tau}_{\text{Treatment}}(a) & \hat{\tau}_{\text{AIPW}}(a) \\ \text{when } \hat{g} \text{ and } \hat{m} \text{ are correct} & \checkmark & \checkmark & \checkmark \\ \text{when only } \hat{g} \text{ is correct} & \checkmark & \checkmark & \checkmark \\ \text{when only } \hat{m} \text{ is correct} & \checkmark & \checkmark & \checkmark \\ \end{array}$

With \hat{g} as the outcome model and \hat{m} as the treatment model:

 $\begin{array}{ccc} \hat{\tau}_{\mathsf{Outcome}}(a) & \hat{\tau}_{\mathsf{Treatment}}(a) & \hat{\tau}_{\mathsf{AIPW}}(a) \\ \text{when } \hat{g} \text{ and } \hat{m} \text{ are correct} & \checkmark & \checkmark & \checkmark \\ \text{when only } \hat{g} \text{ is correct} & \checkmark & \times & \checkmark \\ \text{when only } \hat{m} \text{ is correct} & \times & \end{array}$

	$\hat{ au}_{Outcome}(a)$	$\hat{ au}_{Treatment}(\mathbf{a})$	$\hat{ au}_{AIPW}(a)$
when \hat{g} and \hat{m} are correct	\checkmark	\checkmark	\checkmark
when only \hat{g} is correct	\checkmark	×	\checkmark
when only \hat{m} is correct	×	\checkmark	

	$\hat{\tau}_{Outcome}(a)$	$\hat{ au}_{Treatment}(\mathbf{a})$	$\hat{ au}_{AIPW}(a)$
when \hat{g} and \hat{m} are correct	\checkmark	\checkmark	\checkmark
when only \hat{g} is correct	\checkmark	×	\checkmark
when only \hat{m} is correct	×	\checkmark	\checkmark

The problem of overfitting

Suppose \hat{g} is very complicated

• e.g. regress Y on p = 100 predictors in a sample of n = 150

Debiasing relies on errors: $\hat{g}(A, \vec{X}) - Y$

- ► What is wrong with these errors?
- ► How to fix it?

1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2

- 1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2
- 2. Using $\mathcal{S}_1,$ estimate \hat{g} and \hat{m}

- 1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2
- 2. Using \mathcal{S}_1 , estimate \hat{g} and \hat{m}
- 3. Using \mathcal{S}_2 , calculate the AIPW estimator
 - so that errors are on out-of-sample cases

- 1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2
- 2. Using \mathcal{S}_1 , estimate \hat{g} and \hat{m}
- 3. Using \mathcal{S}_2 , calculate the AIPW estimator
 - ▶ so that errors are on out-of-sample cases

Popularized as double machine learning (Chernozhukov et al. 2018)

- 1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2
- 2. Using \mathcal{S}_1 , estimate \hat{g} and \hat{m}
- 3. Using \mathcal{S}_2 , calculate the AIPW estimator
 - ▶ so that errors are on out-of-sample cases

Popularized as double machine learning (Chernozhukov et al. 2018)

Concern: Loss of sample size due to splitting.

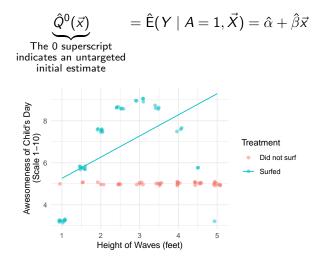
- 1. Split data into sample \mathcal{S}_1 and \mathcal{S}_2
- 2. Using \mathcal{S}_1 , estimate \hat{g} and \hat{m}
- 3. Using \mathcal{S}_2 , calculate the AIPW estimator
 - so that errors are on out-of-sample cases

Popularized as double machine learning (Chernozhukov et al. 2018)

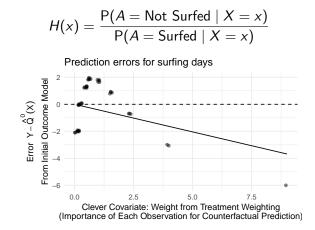
Concern: Loss of sample size due to splitting. Answer: Cross fitting. Swap S_1 and S_2 . Average result.

Targeted learning

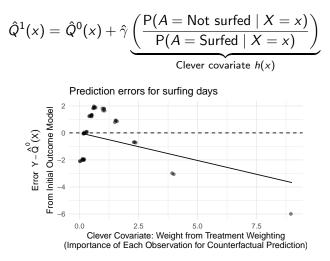
Initial outcome model



Clever covariate



Targeted outcome model



Initial and targeted estimates

Estimand:
$$\tau = E(Y^{\text{Surfed}} - Y^{\text{Not Surfed}} | A = \text{Not Surfed})$$

Initial estimate: $\hat{\tau}^0 = \frac{1}{n_{\text{NotSurfed}}} \sum_{i:A_i = \text{NotSurfed}} \left(\hat{Q}^0(x_i) - y_i\right)$
Targeted estimate: $\hat{\tau}^1 = \frac{1}{n_{\text{NotSurfed}}} \sum_{i:A_i = \text{NotSurfed}} \left(\hat{Q}^1(x_i) - y_i\right)$

Why targeted learning?

Why targeted learning?

- Doubly robust
- ► Intuition: Targeting the outcome model
- Generalizes to GLM outcome models