Doubly-Robust Estimation?

lan Lundberg
Soc 212b
ilundberg.github.io/soc212b

Winter 2025

YEspecially today, slides are a high-level overview and we will rely on the
website for some technical things.


https://ilundberg.github.io/soc212b
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Child:
How much more awesome would my day have been if | had surfed
on the days when my parents didn’t let me?
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ATC: On average, awesomness would increase
by 2.94 if | had surfed on the days | wasn't allowed.
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To discuss:
» In what sense is this line best-fit to the wrong goal?

» How important is the error at each x-value?
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Weighted average error: 1.34.
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Weighted average error: 1.34.
Corrected estimate: 2.94 - 1.34 = 1.60
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Doubly-robust estimation: Summary

For the ATC:

> Predict Y!
» Among treated cases,

> Weight by ’;EQ:;;

» Take weighted average error: yi_vy

» This is a bias correction:
model was fit at x-values of treated cases,
target to predict is x-values of untreated cases

» Among untreated cases, take average yl

» Then subtract the bias correction



Three estimators of E(Y?)
What is right when 2(a,x) — E(Y | A= a, X = %)?
What is right when m(a,x) = P(A=a| X = %)?
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7—Outcome(a) = ; g(a,X,-)
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Double robustness: When is each estimator correct?

With g as the outcome model and 1 as the treatment model:

7,;Outcome(a) 7/=Treatment(a) 7,;AIPW(a)
when g and i are correct
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The problem of overfitting

Suppose g is very complicated

» e.g. regress Y on p = 100 predictors in a sample of n = 150

Debiasing relies on errors: g(A,X) — Y
» What is wrong with these errors?
» How to fix it?



Sample splitting for AIPW


https://academic.oup.com/ectj/article/21/1/C1/5056401
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Sample splitting for AIPW

1. Split data into sample S; and &>

2. Using &1, estimate g and M
3. Using &>, calculate the AIPW estimator
» so that errors are on out-of-sample cases

Popularized as double machine learning (Chernozhukov et al. 2018)

Concern: Loss of sample size due to splitting.
Answer: Cross fitting. Swap &1 and S». Average result.


https://academic.oup.com/ectj/article/21/1/C1/5056401

Targeted learning



Initial outcome model

——
The 0 superscript
indicates an untargeted
initial estimate
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Clever covariate

P(A = Not Surfed | X = x)
P(A = Surfed | X = x)

H(x) =

Prediction errors for surfing days

Ny
Error Y-Q (X)
From Initial Outcome Model

0.0 25 5.0 7.5
Clever Covariate: Weight from Treatment Weighting
(Importance of Each Observation for Counterfactual Prediction)



Targeted outcome model

N . {P(A = Not surfed | X = x)
Q(X)—Q(X)+7< P(A = Surfed | X = x) )

Vv
Clever covariate h(x)

Prediction errors for surfing days

Ny
Error Y-Q (X)
From Initial Outcome Model

0.0 25 5.0 7.5
Clever Covariate: Weight from Treatment Weighting
(Importance of Each Observation for Counterfactual Prediction)



Initial and targeted estimates

Estimand:

Initial estimate:

Targeted estimate:

— E( YSurfed _ YNOt Surfed ‘ A — NOt Surfed)

- > (@O(Xi) - y,-)

n
NotSurfed i:A;=NotSurfed

:#Z

n
NotSurfed i:A;=NotSurfed

(@'x) - v)



Why targeted learning?



Why targeted learning?
» Doubly robust
» Intuition: Targeting the outcome model

» Generalizes to GLM outcome models



