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Learning goals for today

At the end of class, you will be able to:

1. Recognize the promises and pitfalls of four methods to study
the effects of treatments that turn on once
1.1 Difference in difference (DID)
1.2 Interrupted time series (ITS)
1.3 Regression discontinuity (RD)
1.4 Synthetic control (SC)
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Card, D., & Krueger, A. B. (1994).

Minimum Wages and Employment: A Case Study of the Fast-Food
Industry in New Jersey and Pennsylvania.
The American Economic Review, 84(4), 772-793.
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https://davidcard.berkeley.edu/papers/njmin-aer.pdf
https://davidcard.berkeley.edu/papers/njmin-aer.pdf

Economic theory

When the minimum wage rises, how might employment change?
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Economic theory

When the minimum wage rises, how might employment change?

» employees cost more
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Economic theory

When the minimum wage rises, how might employment change?
» employees cost more

» employers might get by with fewer employees
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The setting
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The setting

» Federal minimum wage

» $3.80 on April 1, 1990
» $4.25 on April 1, 1991
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The setting

» Federal minimum wage

» $3.80 on April 1, 1990
» $4.25 on April 1, 1991

» New Jersey minimum wage
» $5.05 on April 1, 1992
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NJ introduces a high minimum wage.
How would you study the effect on employment?

Source: Wikimedia
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https://commons.wikimedia.org/wiki/File:New_Jersey_in_United_States_(zoom).svg

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834



New Jersey
Minimum_\Wage
Rose:

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834



New Jersey Pennsylvania
Minimum_\Wage ; > o change
Rose : -

Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834
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e o
=== |KFC| Rogers |Vendys

171 stores 80 stores 99 stores 60 stores
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N4
R%%’clers Wendys

171 stores 80 stores 99 stores 60 stores

Phone interview:  Feb-Mar 1992 before minimum wage rose
Nov-Dec 1992 after minimum wage rose
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W
R%%’clers Wendys

171 stores 80 stores 99 stores 60 stores

Phone interview:  Feb-Mar 1992 before minimum wage rose
Nov-Dec 1992 after minimum wage rose

Recorded: How many full-time equivalent employees?
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Did starting wages rise in NJ?
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Figure 1
Distribution of Starting Wage Rates
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How did employment change?
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Stores by state

Difference,
PA NJ NJ-PA
Variable (6] (ii) (iii)
1. FTE employment before, 23.33 20.44 —2.89
all available observations  (1.35) (0.51) (1.44)
2. FTE employment after, 21.17  21.03 —0.14
all available observations (0.94) (0.52) (1.07)
3. Change in mean FTE —-2.16 0.59 2.76
employment (1.25) (0.54) (1.36)
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“Contrary to the central prediction of the textbook model of the
minimum wage,...we find no evidence that the rise in New Jersey's
minimum wage reduced employment at fast-food restaurants in the
state.”

Card & Krueger 1994, p. 792
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» simple study
» well-executed

» upended conventional wisdom
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Key assumption: Parallel trends
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Parallel trends assumption: If no law had taken effect, then

the trend in NJ the trend in PA

would equal

0 0 ~= 0 0
YNJ,After - YNJ,Before - YPA,After - YPA,Before
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Parallel trends assumption: If no law had taken effect, then

the trend in NJ the trend in PA

would equal

0 0 ~= 0 0
yNJ,After - YNJ,Before - YPA,After - YPA,Before

Rearranging yields a formula for the counterfactual outcome

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Employment Per Store
.

L
aore INTERVENTION Aer

Time

Parallel trends assumption: If no law had taken effect, then

the trend in NJ the trend in PA

would equal

0 0 ~= 0 0
yNJ,After - YNJ,Before - YPA,After - YPA,Before
Rearranging yields a formula for the counterfactual outcome

By Assumption
=

0
YNJ,After -

Counterfactual
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Employment Per Store
.

Parallel trends assumption: If no law had taken effect, then

the trend in NJ the trend in PA
would equal A

0 0 ~= 0 0
yNJ,After - YNJ,Before - YPA,After - YPA,Before
Rearranging yields a formula for the counterfactual outcome

By Assumption
0 = 0 0 0
YNJ,After - YNJ,Before + YPA,After - YPA,Before

Counterfactual Factual
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Employment Per Store

Parallel trends assumption: If no law had taken effect, then

the trend in NJ the trend in PA
would equal A

0 0 ~= 0 0
yNJ,After - YNJ,Before - YP/—\,After - YPA,Before
Rearranging yields a formula for the counterfactual outcome

By Assumption

0 = 0 0 0
YNJ,After - YNJ,Before + YPA,After - YPA,Before
Counterfactual Factual
: _ vl 0
Effect in NJ = Yyjarer —  YNJAfter
Observed Estimated by Above
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Can we test the parallel trends assumption?

Assumption: The trend in NJ the trend in PA
would equal

0 0 ~= 0 0
YNJ,After - YNJ,Before - YPA,After - YPA,Before
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Can we test the parallel trends assumption?

No.

Assumption: The trend in NJ the trend in PA
would equal

=~

0 0 0 0
YNJ,After _YNJ,Before YPA,After - YPA,Before

——
Not Observable
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Can we test the parallel trends assumption?

No.

Assumption: The trend in NJ the trend in PA
would equal

=~

0 0 0 0
YNJ,After _YNJ,Before YPA,After - YPA,Before

——
Not Observable

You can make it credible by looking at many pre-treatment periods
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DID would be very credible
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DID would be very doubtful
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DID would be very doubtful
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Egami, N., & Yamauchi, S. (2023).

Using multiple pretreatment periods to improve
difference-in-differences and staggered adoption designs.
Political Analysis, 31(2), 195-212.
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https://doi.org/10.1017/pan.2022.8
https://doi.org/10.1017/pan.2022.8

Difference in difference

Treatment Group

Counterfactual

T==-o0

Outcome

Control Group

t=0 t=1 t=
(before) (before) (after)



Difference in difference

Treatment Group
Counterfactual

T==-o0

Outcome

Control Group

t=0 t=1 t=2
(before) (before) (after)
Notation
Ytreatment value
(unit)(time)

Example: Y3
is unit / at time 1
under treatment 0



Difference in difference
Parallel Trends Assumption

Treatment Group ( t t bl )
untestable
Waﬂual 0 0
b E( YTreated,2 - YTreated,l)

T==-o0

Outcome

0
E( YControI 2 YControI,l)

Control Group

tZ0 t=1 t=2
(before) (before) (after)

Notation

Ytreatment value
(unit)(time)

Example: Y3
is unit / at time 1
under treatment 0



Difference in difference

Parallel Trends Assumption

Treatment Group ( t t bl )
untestable
w“mal
- E(Y?

TT-o reated,2 YTreated 1)

Outcome

0
E( YControI 2 YControI,l)

Control Group

o) (rerone) ) Extended Parallel Trends
_ (testable)
Notation - >
Ytreatment value E( YTreated,l - YTreated,O)
(unit)(time) —
0 0
Example: Y3 E(YControl,1 — YControl,0)

is unit / at time 1
under treatment 0
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Extended Parallel Trends Extended Parallel Trends Violated
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Malesky, E. J., Nguyen, C. V., & Tran, A. (2014).
The impact of recentralization on public services:
A difference-in-differences analysis of the abolition of elected

councils in Vietnam.
American Political Science Review, 108(1), 144-168.
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https://doi.org/10.1017/S0003055413000580
https://doi.org/10.1017/S0003055413000580
https://doi.org/10.1017/S0003055413000580

Does government work better when it is centralized or
decentralized?
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Vietnam setting: A study of recentralization

[National Assem ny} most centralized

[Provincial People’s Com mittee}

National Assembly

sé)OSStuFZ?solutlon EDE%HG(—W : : : district &~ 120k people

Removal of DPCs

[Commune People’s Committee} most decentralized
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Vietnam setting: A study of recentralization

Input from social scientists
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Vietnam setting: A study of recentralization

Input from social scientists
1. Enough treated units to study
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Vietnam setting: A study of recentralization

Input from social scientists
1. Enough treated units to study
2. Sampling stratified by region
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Vietnam setting: A study of recentralization

Input from social scientists
1. Enough treated units to study
2. Sampling stratified by region
3. Sampling stratified by

» city versus rural
» lowland versus highland
» midland versus inter-nationally bordered land
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Vietnam setting: A study of recentralization

Input from social scientists
1. Enough treated units to study
2. Sampling stratified by region
3. Sampling stratified by

» city versus rural
» lowland versus highland
» midland versus inter-nationally bordered land

4. Sampling stratified by socioeconomic and public
administration performance
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Panel Data

FIGURE 2. Map of Treatment Provinces and
National-Level Cities

Treatment and control
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-
Central
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Difference in Difference

Interrupted Time Series
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Vietnam Household Living Standards Survey
Reports by each local commune by commune leaders

» 2006 and 2008: Before DPC abolition
» 2010: After DPC abolition

One outcome we will examine:
Is there the following project in the commune?

» Investment on culture and education
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FIGURE 2. Map of Treatment Provinces and
National-Level Cities
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Outcome 1

FIGURE 2. M f Ti Provi d 1
FIGURE.2.  Map of Treatment Provinces an Education and cultural programs

Is there the following project in

the commune?
Northern ;
Mountain R
Red River Investment on culture

and education

Central Coast

Central

Treatment and control Highlands
Control
Treatment: provinces

Bl Treatment: cities

South East
Mekong +
River Delta
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National-Level Cities

FIGURE 2. Map of Treatment Provinces and

Outcome 2

Treatment and control
Control
Treatment: provinces
Il Treatment: cities

South East

%

Mekong
River Delta

Northern
Mountain ',.r:y“
. Red River
Delta
Central Coast
-~
Central
Highlands
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Interrupted Time Series

Tap water

Is there the following project in
the commune?

Coded 1

Indoor private piped water
Outdoor private piped water
Public piped water

Coded 0

Well water

Well with protection walls
Well without protection walls
Stream water with protection
Stream water without protection
Rainwater

Bottled water

Water brought by pedicab
Tank water

river lake pond
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Outcome 3

FIGURE 2. Map of Treatment Provinces and 1
National-Level Cities Ag”CU ltural center

Is there any agriculture
extension center

Northern p . .
Mountain F o in this commune?
. Red River
Delta
Central Coast
-
Central
Treatment and control Highlands

Control
Treatment: provinces
Bl Treatment: cities

South East
Mekong +
River Delta
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Education and Cultural Program Tap Water Agricultural Center
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Education and Cultural Program Tap Water Agricultural Center
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In each case, do you believe parallel trends?
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Education and Cultural Program Tap Water Agricultural Center

0409 o freatment 0359 0097
-o-- Control
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o
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=
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Year Year Year

In each case, do you believe parallel trends?

Table 2. Assessing underlying assumptions using the pretreatment outcomes.

Estimate Std.error p-value 95% Std. equivalence CI
Education and cultural program  —0.007 0.096 0.940 [-0.166,0.166]
Tap water 0.166 0.083 0.045 [-0.302,0.302]
Agricultural center 0.198 0.082 0.015 [-0.332,0.332]
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Benefit 1: Assessing assumptions

Pre-treatment periods enable us to
assess underlying ssumptions

Parallel trends is untestable, but being parallel
in the pre-treatment period builds confidence
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Benefit 2: Improving efficiency

Pre-treatment periods also enable us to
improve estimation accuracy
when parallel trends holds
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Benefit 2: Improving efficiency

Estimator 1
Treatment Group
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Notation

Ytreatment value
(unit)(time)



Benefit 2: Improving efficiency

Estimator 1

Treatment Group —1 ~0 =0 =0

\/ (Y7o — Y1) = (Yo — Vi)
ounterfactual ~

- Treatment Group Control Group

)
£ )
g Time2- Timel Time 2 - Time 1
(o]
Control Group EStImator 2
t=0 tZ1 tZ2
(before) (before) (after)
Notation

Ytreatment value
(unit)(time)



Benefit 2: Improving efficiency

Outcome

Treatment Group
Counterfactual

T==-o0

Control Group

t=0 t=1 t=2
(before) (before) (after)
Notation

Ytreatment value
(unit)(time)

Estimator 1
(Y, —

Yh) -

(Y& — Y&)

Treatment Group
Time 2 -Time 1

Estimator 2
(Y72 —

Y7o) -

Control Group
Time 2 -Time 1

(Y22 — V&)

Treatment Group
Time 2 - Time 0

Control Group
Time 2 - Time 0



Benefit 2: Improving efficiency

(Y& — Y&)

Control Group
Time 2 -Time 1

(Y22 — V&)

Control Group
Time 2 - Time 0

Estimator 1
Treatment Group _ _
Yi,— Y9 -
b\Aﬁctual ( T2 Tl)
[0} - Vv
E =0 Treatment Group
£ Time2-Timel
o
Control Group EStImator 2
1 /0
120 t21 t22 (YT2 - YTO) -
(before) (before) (after)
Treatment Group
Time 2 - Time 0
Notation
Ytreatment value Pooled estimator:
(unit)(time) Average the two!
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Benefit 2: Improving efficiency

Panel Data
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0.20
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0.10
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0.00

ATT (90% Confidence Interval)

-0.05

Difference in Difference Interrupted Time Series

Education and Cultural Program

DID

Double DID
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Benefit 3: A more flexible assumption

Pre-treatment periods make it possible to
allow for a more flexible parallel trends assumption
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Benefit 3: A more flexible assumption

Parallel Trends-in-Trends

TT--o0
t=0 t=1 t=2
(before) (before) (after)

Trend of Treatment Group
(-2,-1)

Trend of Control Group
(-3.5, -2.5)



Benefit 3: A more flexible assumption

Parallel Trends-in-Trends

t=0 t=1 t=2
(before) (before) (after)

Trend of Treatment Group
(-2,-1)

Trend of Control Group
(-3.5, -2.5)

AssUMPTION 3 (Parallel Trends-in-Trends)

{E[Y200)| G; = 1]-E[Y1(0) | G; = 11} ~ {E[¥1(0) | Gi = 1] ~E[¥io(0) | G; = 1]}

Trend of the treatment group from t=1 to ¢=2 Trend of the treatment group from ¢=0 to t=1

= {E[Y2(0) | G; = 0] ~E[ ¥ (0) | G; = 0]} ~ {E[;1(0) | G; = O] ~E[Yo(0) | G; = 0] }.

Trend of the control group from t=1 to =2 Trend of the control group from =0 to =1



Benefit 3: A more flexible assumption

Parallel Trends-in-Trends AssUMPTION 3 (Parallel Trends-in-Trends)

{E[Y200)| G; = 1]-E[Y1(0) | G; = 11} ~ {E[¥1(0) | Gi = 1] ~E[¥io(0) | G; = 1]}

Trend of the treatment group from t=1 to t=2 Trend of the treatment group from ¢=0 to t=1
Te = {E[Y;2(0) | Gi = 0] E[Y1(0) | G; = 0]} - {E[ Y (0) | G; = 0] - E[Y;0(0) | G; = 0]} .
Trend of the control group from t=1 to t=2 Trend of the control group from t=0 to t=1

Sequential DID Estimator

=0 =1 t22
(before) (before) (after)
i G=1 Yi iiG=1Yi i Gi=0Yi i Gi=0Yi
Trend of Treatment Group Toom = {(Z,A G=1Y2 Ziig=1Yn ) B (ZL G=0Yi2 Zi:gi=0¥i )}
(-2,-1) ma m noz no1
Trend ofacsontéosl Group {(Z;; G=1Yn  Ziig=1 Yio) (Ei: Gi=0Yin  Xi:Gi=0 Yio)}
(-35,-25) nm no no1 Moo ’
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Benefit 3: A more flexible assumption

Tap Water
0.35 4
0.30 - Tap Water
0.05 —
0.25 DID Double DID
0.20 4 0.00 —
0.15 -0.05 —
0.10 | -0.10 4
0.05 + -0.15 —
T T T
2006 2008 2010 -0.20
Year -0.25 —
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Benefits of multiple pre-treatment periods

1. assess underlying assumptions
2. improve estimation accuracy

3. allow for a more flexible parallel trends assumption

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Benefits of multiple pre-treatment periods

1. assess underlying assumptions
2. improve estimation accuracy
3. allow for a more flexible parallel trends assumption
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Benefits of multiple pre-treatment periods

1. assess underlying assumptions
2. improve estimation accuracy

3. allow for a more flexible parallel trends assumption
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Interrupted time series?

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

/

Employment Per Store
/
[ ]

INTERVENTION

Time

In what settings does this work well?

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
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Interrupted time series?
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In what settings does this work well?
» When you have a strong pre-treatment trend to forecast Y?
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

/

Employment Per Store
[ ]

INTERVENTION

Time

In what settings does this work well?
» When you have a strong pre-treatment trend to forecast Y?
» When you don't have a comparable unit that is never treated

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epldemlolo sgl 348-355
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

Employment Per Store

+
INTERVENTION

Time

Theoretical Estimand

E(Yl - YO | T > tlntervention)

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

Employment Per Store
\\
.

+
INTERVENTION

Time

Identifying Assumption
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

Employment Per Store

INTERVENTION

Time

Identifying Assumption
» |n the absence of the intervention,
the pre-intervention trend in Y° would have continued

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epldemlolo Sgl 348-355
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

/

Employment Per Store

INTERVENTION

Time

Concrete steps:

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

3

/

Employment Per Store
/
[ ]

INTERVENTION

Time

Concrete steps:
1. Learn a model on the pre-treatment period

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

3

/

Employment Per Store
[ ]

INTERVENTION

Time

Concrete steps:
1. Learn a model on the pre-treatment period
» Evaluation metric: Forecast within the pre-treatment period

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series?

You study one unit. It is untreated. Then it is treated.

Employment Per Store
/
[ ]

INTERVENTION

Time

Concrete steps:
1. Learn a model on the pre-treatment period
» Evaluation metric: Forecast within the pre-treatment period

2. Forecast YO for the post-treatment period

!Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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Interrupted time series: When it becomes doubtful
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Interrupted time series: When it becomes doubtful
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Interrupted time series: When it becomes doubtful

Outcome

INTERVENTION

Time

~o— Treated

—eo— Untreated
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INTERVENTION
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Interrupted time series: When it becomes doubtful

Outcome

INTERVENTION

Time

~o— Treated

—eo— Untreated
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Interrupted time series: Recap

» ITS applies when treatment turns on at one time for all units
» ITS requires a parametric model to extrapolate

» ITS is most credible near the time when treatment turns on
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When to use each method

» Difference in difference
» One unit becomes treated New Jersey
» One unit never becomes treated Pennsylvania
» The trends in Y° are parallel

» Interrupted time series

» Everyone becomes treated at X = ¢ New drug
» You believe you can forecast Y?° Deaths would
from X <cto X >c have been stable
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Regression discontinuity?
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Regression discontinuity?
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Outcomes Y(0),Y(1)

2Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs.
AnﬂmﬂlaRe‘ﬂ-ﬁWciQi iEmBQmJCSmL&AJpL&Qih‘&EELMCS Regression Discontinuity Synthetic Control


https://doi.org/10.1146/annurev-economics-051520-021409

Regression discontinuity?

T . Examples
Cattaneo & Titiunik 2022 Fig la

Outcomes Y(0),Y(1)

2Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs.
AnﬂmﬂlaRe‘ﬂ-ﬁWciQi iEmeméCSmlc]rﬂjptgd?'li‘r&EE]encs Regression Discontinuity Synthetic Control


https://doi.org/10.1146/annurev-economics-051520-021409

Regression discontinuity?

T . Examples
Cattaneo & Titiunik 2022 Fig la

X is PSAT test score

c is a score cutoff

A is National Merit Scholarship
(Thistlewaite & Campbell 1960)

Outcomes Y(0),Y(1)
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Regression discontinuity?

T . Examples
Cattaneo & Titiunik 2022 Fig la

X is PSAT test score
c is a score cutoff

y A is National Merit Scholarship
....................................... 'y (Thistlewaite & Campbell 1960)

X is vote share

c is 50%

| —Cutoff A is winning the election
(De la Cuesta & Imai 2016)
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Outcomes Y(0),Y(1)
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2Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs.
AnﬂmﬁlaRe@ﬁWciQi iEmBQmJCSmLL]rAJpL&Qih‘&ESLMCS Regression Discontinuity Synthetic Control


https://osf.io/tc5j7/download
https://imai.fas.harvard.edu/research/files/RD.pdf
https://doi.org/10.1146/annurev-economics-051520-021409

Regression discontinuity?

T . Examples
Cattaneo & Titiunik 2022 Fig la

X is PSAT test score

a .
c is a score cutoff
_ y A is National Merit Scholarship
§ (Thistlewaite & Campbell 1960)
g X is vote share
s AeTEVOM i o
Z c is 50%
| —Cutoff A is winning the election
(De la Cuesta & Imai 2016)

c

Score X X is date
c is 2am Nov 6 2022
A is hours of PM darkness
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Regression discontinuity?

Theoretical Estimand

Cattaneo & Titiunik 2022 Fig 1a E(Y(1) = Y(0) | X =)

Outcomes Y(0),Y(1)
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Regression discontinuity?

Cattaneo & Titiunik 2022 Fig 1a
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Regression discontinuity?

Catt & Titiunik 2022 Fig 1 Theoretical Estimand
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3 o Empirical Estimand
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Outcomes Y(0),Y(1)

limutcE(Y | X = x)

; Cutoff
= Identifying Assumptions

E(Y(1) | X = x) and
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and fx(x) > 0 for x near c
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Regression discontinuity?

Cattaneo & Titiunik 2022 Fig 1a Promises of RD
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Regression discontinuity?
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— Localto X = ¢
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Regression discontinuity?

Cattaneo & Titiunik 2022 Fig la Promises of RD

a — Highly credible

— Easy to visualize

Drawbacks of RD
— Localto X =c¢
— Sensitive to sorting

Outcomes Y(0),Y(1)

Score X

(people moving
strategically over
the cutoff)
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When to use each method

» Difference in difference
» One unit becomes treated New Jersey
» One unit never becomes treated Pennsylvania
» The trends in Y° are parallel

» Interrupted time series

» Everyone becomes treated at X = ¢ New drug
» You believe you can forecast Y?° Deaths would
from X <cto X >c¢ have been stable

» Regression discontinuity
» Everyone becomes treated at X = ¢ Win the election

» You want a local estimate
E(Y' - Y° | X = ¢) at the cutoff Close elections
» Y% and Y! are continuous at X = ¢
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Synthetic control®

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control®

In 1988, California implemented a tobacco control program

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
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Synthetic control®

In 1988, California implemented a tobacco control program

> New tax: 25 cents per pack

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,
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Synthetic control®

In 1988, California implemented a tobacco control program
> New tax: 25 cents per pack

» Money earmarked for smoking-reduction programs

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
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Synthetic control®

In 1988, California implemented a tobacco control program
> New tax: 25 cents per pack

» Money earmarked for smoking-reduction programs

How much did it reduce CA cigarette sales in 19907 19957 20007

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control*
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Figure 1. Trends in per-capita cigarette sales: California vs. the rest
of the United States.

Can't use RD
— Effect at 1988 not of interest

Can't use ITS
— Hard to extrapolate Y?° trend

Can't use DID
— No other state like CA

Idea: Create a
synthetic CA

to estimate

Y((:)A,t for t > 1988

*Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,

105(490), 493-505.
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Synthetic control®
Synthetic CA as a weighted average of other states

Table 1. Cigarette sales predictor means

California

_ Average of
Variables Real  Synthetic 38 control states
Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15-24 17.40 17.40 17.29
Retail price 89.42  89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988  90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10  126.99 132.81

NOTE: All variables except lagged cigarette sales are averaged for the 19801988 period
(beer consumption is averaged 1984-1988). GDP per capita is measured in 1997 dollars,
retail prices are measured in cents, beer consumption is measured in gallons, and cigarette
sales are measured in packs.

®Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control®
Synthetic CA as a weighted average of other states

Theoretical Estimand: 7(t) = YclA,t - YgA’t t > 1988
Empirical Estimand:  0(t) = Y¢a , = Y& ntneticcar  t > 1988

Identifying Assumption: YgAJ = YSoyntheticCA,t t > 1988

Counterfactual Factual
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Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

"Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California's
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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When to use each method

» Difference in difference
» One unit becomes treated New Jersey
» One unit never becomes treated Pennsylvania
» The trends in Y° are parallel

» Interrupted time series

» Everyone becomes treated at X = ¢ New drug
> You believe you can forecast Y?° Deaths would
from X < cto X >c have been stable

» Regression discontinuity
» Everyone becomes treated at X = ¢ Win the election

» You want a local estimate
E(Y' — Y% | X = ¢) at the cutoff Close elections
» Y% and Y! are continuous at X = ¢

» Synthetic control

» One unit becomes treated California
» Many units are never treated Other states
» You want to extrapolate far from the cutoff 1988—2000

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Discussion

» What data do you need to use the method?
» What are the most likely limitations?
» How would you generalize your method to settings where

many units become treated, potentially at different time
points (staggered adoption)?
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Learning goals for today

At the end of class, you will be able to:

1. Recognize the promises and pitfalls of four methods to study
the effects of treatments that turn on once
1.1 Difference in difference (DID)
1.2 Interrupted time series (ITS)
1.3 Regression discontinuity (RD)
1.4 Synthetic control (SC)
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