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Learning goals for today

At the end of class, you will be able to:

1. Recognize the promises and pitfalls of four methods to study
the effects of treatments that turn on once

1.1 Difference in difference (DID)
1.2 Interrupted time series (ITS)
1.3 Regression discontinuity (RD)
1.4 Synthetic control (SC)
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Card, D., & Krueger, A. B. (1994).
Minimum Wages and Employment: A Case Study of the Fast-Food
Industry in New Jersey and Pennsylvania.
The American Economic Review, 84(4), 772-793.
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Economic theory

When the minimum wage rises, how might employment change?

▶ employees cost more

▶ employers might get by with fewer employees
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The setting

▶ Federal minimum wage
▶ $3.80 on April 1, 1990
▶ $4.25 on April 1, 1991

▶ New Jersey minimum wage
▶ $5.05 on April 1, 1992
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NJ introduces a high minimum wage.
How would you study the effect on employment?
Source: Wikimedia
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https://commons.wikimedia.org/wiki/File:New_Jersey_in_United_States_(zoom).svg


Photo by James Loesch - https://www.flickr.com/photos/jal33/49113053632/
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=87207834

New Jersey
Minimum Wage
Rose

Pennsylvania
No change
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171 stores 80 stores 99 stores 60 stores
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171 stores 80 stores 99 stores 60 stores

Phone interview: Feb-Mar 1992 before minimum wage rose

Nov-Dec 1992 after minimum wage rose
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171 stores 80 stores 99 stores 60 stores

Phone interview: Feb-Mar 1992 before minimum wage rose

Nov-Dec 1992 after minimum wage rose

Recorded: How many full-time equivalent employees?

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Did starting wages rise in NJ?
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How did employment change?
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“Contrary to the central prediction of the textbook model of the
minimum wage,...we find no evidence that the rise in New Jersey’s
minimum wage reduced employment at fast-food restaurants in the
state.”

Card & Krueger 1994, p. 792
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▶ simple study

▶ well-executed

▶ upended conventional wisdom
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Key assumption: Parallel trends
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Parallel trends assumption: If no law had taken effect, then

the trend in NJ︷ ︸︸ ︷
Y 0
NJ,After − Y 0

NJ,Before

would equal︷︸︸︷
=

the trend in PA︷ ︸︸ ︷
Y 0
PA,After − Y 0

PA,Before

Rearranging yields a formula for the counterfactual outcome

Y 0
NJ,After︸ ︷︷ ︸

Counterfactual

By Assumption︷︸︸︷
= Y 0

NJ,Before + Y 0
PA,After − Y 0

PA,Before︸ ︷︷ ︸
Factual

Effect in NJ = Y 1
NJ,After︸ ︷︷ ︸

Observed

− Y 0
NJ,After︸ ︷︷ ︸

Estimated by Above
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Can we test the parallel trends assumption?

No.

Assumption: The trend in NJ︷ ︸︸ ︷
Y 0
NJ,After − Y 0

NJ,Before

would equal︷︸︸︷
=

the trend in PA︷ ︸︸ ︷
Y 0
PA,After − Y 0

PA,Before

You can make it credible by looking at many pre-treatment periods
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DID would be very credible
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DID would be very doubtful
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Egami, N., & Yamauchi, S. (2023).
Using multiple pretreatment periods to improve
difference-in-differences and staggered adoption designs.
Political Analysis, 31(2), 195-212.
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Difference in difference

Notation

Y treatment value
(unit)(time)

Example: Y 0
i1

is unit i at time 1
under treatment 0

Parallel Trends Assumption
(untestable)

E (Y 0
Treated,2 − Y 0

Treated,1)
=

E (Y 0
Control,2 − Y 0

Control,1)

Extended Parallel Trends
(testable)

E (Y 0
Treated,1 − Y 0

Treated,0)
=

E (Y 0
Control,1 − Y 0

Control,0)
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Malesky, E. J., Nguyen, C. V., & Tran, A. (2014).
The impact of recentralization on public services:
A difference-in-differences analysis of the abolition of elected
councils in Vietnam.
American Political Science Review, 108(1), 144-168.
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Does government work better when it is centralized or
decentralized?
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Vietnam setting: A study of recentralization

National Assembly

Provincial People’s Committee

District People’s Committee

Commune People’s Committee

most centralized

district ≈ 120k people

most decentralized

National Assembly
2008 Resolution
to Study
Removal of DPCs

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Vietnam setting: A study of recentralization

Input from social scientists

1. Enough treated units to study

2. Sampling stratified by region

3. Sampling stratified by
▶ city versus rural
▶ lowland versus highland
▶ midland versus inter-nationally bordered land

4. Sampling stratified by socioeconomic and public
administration performance
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Vietnam Household Living Standards Survey
Reports by each local commune by commune leaders

▶ 2006 and 2008: Before DPC abolition

▶ 2010: After DPC abolition

One outcome we will examine:
Is there the following project in the commune?

▶ Investment on culture and education
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Outcome 1
Education and cultural programs

Is there the following project in
the commune?

Investment on culture
and education

Outcome 2
Tap water

Is there the following project in
the commune?

Coded 1
Indoor private piped water
Outdoor private piped water
Public piped water

Coded 0
Well water
Well with protection walls
Well without protection walls
Stream water with protection
Stream water without protection
Rainwater
Bottled water
Water brought by pedicab
Tank water
river lake pond

Outcome 3
Agricultural center

Is there any agriculture
extension center
in this commune?
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Benefit 1: Assessing assumptions

Pre-treatment periods enable us to
assess underlying ssumptions

Parallel trends is untestable, but being parallel
in the pre-treatment period builds confidence
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Benefit 2: Improving efficiency

Pre-treatment periods also enable us to
improve estimation accuracy
when parallel trends holds
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Benefit 2: Improving efficiency

Notation

Y treatment value
(unit)(time)

Estimator 1

Estimator 2

(Ȳ 1
T2 − Ȳ 0

T1)︸ ︷︷ ︸
Treatment Group
Time 2 - Time 1

− (Ȳ 0
C2 − Ȳ 0

C1)︸ ︷︷ ︸
Control Group

Time 2 - Time 1

(Ȳ 1
T2 − Ȳ 0

T0)︸ ︷︷ ︸
Treatment Group
Time 2 - Time 0

− (Ȳ 0
C2 − Ȳ 0

C0)︸ ︷︷ ︸
Control Group

Time 2 - Time 0

Pooled estimator:
Average the two!
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T0)︸ ︷︷ ︸
Treatment Group
Time 2 - Time 0

− (Ȳ 0
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Benefit 2: Improving efficiency

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Benefit 3: A more flexible assumption

Pre-treatment periods make it possible to
allow for a more flexible parallel trends assumption
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Benefit 3: A more flexible assumption
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Benefits of multiple pre-treatment periods

1. assess underlying assumptions

2. improve estimation accuracy

3. allow for a more flexible parallel trends assumption
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Interrupted time series1

You study one unit. It is untreated. Then it is treated.
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1. Learn a model on the pre-treatment period

▶ Evaluation metric: Forecast within the pre-treatment period

2. Forecast Y 0 for the post-treatment period

1Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time
series regression for the evaluation of public health interventions: A tutorial.
International Journal of Epidemiology, 46(1), 348-355.
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In what settings does this work well?
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Theoretical Estimand

E(Y 1 − Y 0 | T > tIntervention)
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Identifying Assumption
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Interrupted time series: When it becomes doubtful
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Interrupted time series: When it becomes doubtful
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Interrupted time series: Recap

▶ ITS applies when treatment turns on at one time for all units

▶ ITS requires a parametric model to extrapolate

▶ ITS is most credible near the time when treatment turns on
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When to use each method

▶ Difference in difference
▶ One unit becomes treated New Jersey
▶ One unit never becomes treated Pennsylvania
▶ The trends in Y 0 are parallel

▶ Interrupted time series
▶ Everyone becomes treated at X = c New drug
▶ You believe you can forecast Y 0 Deaths would

from X < c to X > c have been stable
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Regression discontinuity2
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Identifying Assumptions
E(Y (1) | X = x) and
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and fX (x) > 0 for x near c
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Cattaneo & Titiunik 2022 Fig 1a Promises of RD

— Highly credible

— Easy to visualize

Drawbacks of RD

— Local to X = c

— Sensitive to sorting

(people moving
strategically over

the cutoff)

2Cattaneo, M. D., & Titiunik, R. (2022). Regression discontinuity designs.
Annual Review of Economics, 14, 821-851.Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control

https://doi.org/10.1146/annurev-economics-051520-021409


When to use each method

▶ Difference in difference
▶ One unit becomes treated New Jersey
▶ One unit never becomes treated Pennsylvania
▶ The trends in Y 0 are parallel

▶ Interrupted time series
▶ Everyone becomes treated at X = c New drug
▶ You believe you can forecast Y 0 Deaths would

from X < c to X > c have been stable

▶ Regression discontinuity
▶ Everyone becomes treated at X = c Win the election
▶ You want a local estimate

E(Y 1 − Y 0 | X = c) at the cutoff Close elections
▶ Y 0 and Y 1 are continuous at X = c

Panel Data Difference in Difference Interrupted Time Series Regression Discontinuity Synthetic Control



Synthetic control3

In 1988, California implemented a tobacco control program

▶ New tax: 25 cents per pack

▶ Money earmarked for smoking-reduction programs

How much did it reduce CA cigarette sales in 1990? 1995? 2000?

3Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California’s
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control4

Can’t use RD
— Effect at 1988 not of interest

Can’t use ITS
— Hard to extrapolate Y 0 trend

Can’t use DID
— No other state like CA

Idea: Create a
synthetic CA
to estimate
Y 0
CA,t for t ≥ 1988

4Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California’s
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control5

Synthetic CA as a weighted average of other states

5Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California’s
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control6

Synthetic CA as a weighted average of other states

Theoretical Estimand: τ(t) = Y 1
CA,t − Y 0

CA,t t ≥ 1988

Empirical Estimand: θ(t) = Y 1
CA,t − Y 0

SyntheticCA,t t ≥ 1988

Identifying Assumption: Y 0
CA,t︸ ︷︷ ︸

Counterfactual

= Y 0
SyntheticCA,t︸ ︷︷ ︸

Factual

t ≥ 1988

6Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
methods for comparative case studies: Estimating the effect of California’s
tobacco control program. Journal of the American Statistical Association,
105(490), 493-505.
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Synthetic control7

7Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control
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tobacco control program. Journal of the American Statistical Association,
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When to use each method

▶ Difference in difference
▶ One unit becomes treated New Jersey
▶ One unit never becomes treated Pennsylvania
▶ The trends in Y 0 are parallel

▶ Interrupted time series
▶ Everyone becomes treated at X = c New drug
▶ You believe you can forecast Y 0 Deaths would

from X < c to X > c have been stable

▶ Regression discontinuity
▶ Everyone becomes treated at X = c Win the election
▶ You want a local estimate

E(Y 1 − Y 0 | X = c) at the cutoff Close elections
▶ Y 0 and Y 1 are continuous at X = c

▶ Synthetic control
▶ One unit becomes treated California
▶ Many units are never treated Other states
▶ You want to extrapolate far from the cutoff 1988→2000
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Discussion

▶ What data do you need to use the method?

▶ What are the most likely limitations?

▶ How would you generalize your method to settings where
many units become treated, potentially at different time
points (staggered adoption)?
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Learning goals for today

At the end of class, you will be able to:

1. Recognize the promises and pitfalls of four methods to study
the effects of treatments that turn on once

1.1 Difference in difference (DID)
1.2 Interrupted time series (ITS)
1.3 Regression discontinuity (RD)
1.4 Synthetic control (SC)
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