Estimation by weighting

lan Lundberg Soc 212b ilundberg.github.io/soc212b

Winter 2025

At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Review of what we have learned

Causal assumptions

Review of what we have learned

Causal assumptions

Nonparametric estimator

- ► Group by *L*, then mean difference in *Y* over *A*
- Re-aggregate over subgroups

Review of what we have learned

Causal assumptions

Nonparametric estimator

- ► Group by *L*, then mean difference in *Y* over *A*
- Re-aggregate over subgroups

Outcome modeling estimator

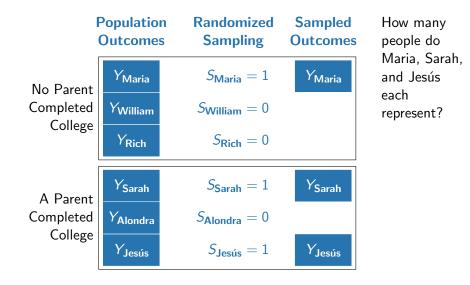
- Model Y^1 given L among the treated
- Model Y^0 given L among the untreated
- Predict for everyone and take the difference
- Average over all units

Inverse probability weighting: Population mean

Population Outcomes			Sampled Outcomes	How many people do Maria, Sarah
	Y _{Maria}	$S_{Maria} = 1$	Y_{Maria}	Maria, Sarah, and Jesús
	$Y_{William}$	$S_{\text{William}} = 0$		each represent?
	Y_{Rich}	$S_{Rich} = 0$		
	Y_{Sarah}	$S_{Sarah} = 1$	Y_{Sarah}	
	$Y_{Alondra}$	$S_{Alondra} = 0$		
	$Y_{Jesús}$	$S_{Jesús} = 1$	$Y_{Jesús}$	

,

Inverse probability weighting: Population mean



Inverse probability weighting: Population mean

Each unit has a probability of being sampled.

 $P(S = 1 \mid \vec{X})$

If we believe conditionally exchangeable sampling,

 $S \perp Y \mid \vec{X}$

weight by the inverse probability of sampling.

$$w = \frac{1}{\mathsf{P}(S = 1 \mid \vec{X})}$$
$$\hat{\mathsf{E}}(Y) = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}$$

Inverse probability weighting: Non-probability sample

Suppose we have the Xbox sample (Wang et al. 2015)

- Imagine we believe conditional exchangeability
- They have the counts $n_{\vec{x}}$ in each demographic subgroup \vec{x} in the sample
- They estimate the population sizes $N_{\vec{x}}$ from exit polls
- ► Can we estimate by weighting?
 - Assume for simplicity that each $n_{\vec{x}}$ is much greater than 0

Inverse probability weighting: Non-probability sample

1. Estimate the probability of sampling

$$\hat{\pi}_{i} = \hat{\mathsf{P}}(S = 1 \mid \vec{X} = \vec{x}_{i}) = \frac{n_{\vec{X} = \vec{x}_{i}}}{N_{\vec{X} = \vec{x}_{i}}} = \frac{\sum_{j}^{j} S_{j}\mathbb{I}(\vec{X}_{j} = \vec{x}_{i})}{\sum_{j} \mathbb{I}(\vec{X}_{j} = \vec{x}_{i})}$$
Number of population members who look like unit *i*

Number of seconds

2. Weight by inverse probability of sampling

$$\hat{\mathsf{E}}(Y) = rac{\sum_i \hat{w}_i y_i}{\sum_i \hat{w}_i} \qquad ext{for } \hat{w}_i = rac{1}{\hat{\pi}_i}$$

Inverse probability weighting: Non-probability sample

Takeaway: Exactly like a probability sample except

- conditional exchangeability holds only by assumption
- ▶ inverse probability of sampling weights must be estimated

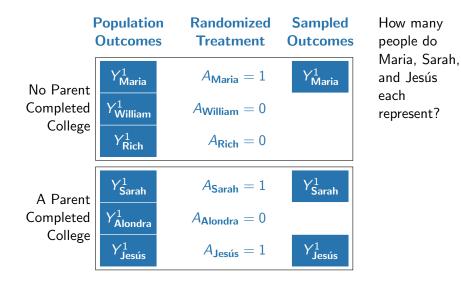
Inverse probability weighting: Mean under treatment

A = 1 indicates child completed college

Population Randomized Sampled How many Outcomes Sampling Treatment people do Maria, Sarah, Y^1_{Maria} $A_{Maria} = 1$ Y^1_{Maria} and Jesús each $A_{\text{William}} = 0$ $Y^1_{William}$ represent? Y^1_{Rich} $A_{\rm Rich} = 0$ Y^1_{Sarah} $A_{Sarah} = 1$ Y^1_{Sarah} $Y^1_{Alondra}$ $A_{\text{Alondra}} = 0$ $Y^1_{\mathsf{Jesús}}$ $A_{\text{lesús}} = 1$ $Y^1_{\mathsf{Jesús}}$

Inverse probability weighting: Mean under treatment

A = 1 indicates child completed college



Inverse probability weighting: Mean under treatment A = 1 indicates child completed college. \vec{X} indicates parent completed college.

When estimating the mean outcome under treatment,

 $E(Y^1)$

each unit has a probability of being treated.

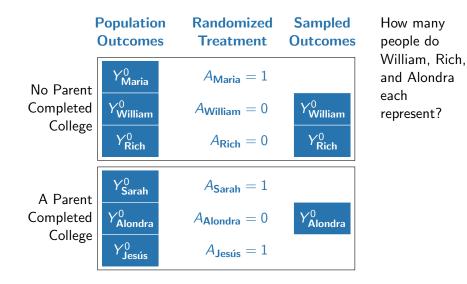
 $P(A=1\mid \vec{X})$

Weight treated units by the inverse probability of treatment.

$$w = \frac{A}{\mathsf{P}(A=1 \mid \vec{X})}$$

Inverse probability weighting: Mean under control

A = 1 indicates child completed college



Inverse probability weighting: Mean under control A = 1 indicates child completed college. \vec{X} indicates parent completed college.

When estimating the mean outcome under treatment,

 $E(Y^0)$

each unit has a probability of being untreated.

 $P(A=0\mid \vec{X})$

Weight treated units by the inverse probability of treatment.

$$w = \frac{1 - A}{\mathsf{P}(A = 0 \mid \vec{X})}$$

Inverse probability weighting: Average causal effect

Define inverse probability of treatment weights

$$w_i = \begin{cases} \frac{1}{\mathsf{P}(A=1|\vec{X}=\vec{x_i})} & \text{if treated} \\ \frac{1}{\mathsf{P}(A=0|\vec{X}=\vec{x_i})} & \text{if untreated} \end{cases}$$

Estimate each mean potential outcome by a weighted mean

$$\hat{\mathsf{E}}(Y^{1}) = \sum_{i:A_{i}=1} w_{i}Y_{i} / \sum_{i:A_{i}=1} w_{i}$$
$$\hat{\mathsf{E}}(Y^{0}) = \sum_{i:A_{i}=0} w_{i}Y_{i} / \sum_{i:A_{i}=0} w_{i}$$

Take the difference between $\hat{\mathsf{E}}(\mathit{Y}^1)$ and $\hat{\mathsf{E}}(\mathit{Y}^0)$

Exercise: Weight for ATT

Goal: Average treatment effect on the treated

When X = 1,

- ► 7 treated units
- ► 3 untreated units

▶
$$P(A = 1 | X = 1) = 0.7$$

When X = 0,

- 4 treated units
- 6 untreated units

►
$$P(A = 1 | X = 0) = 0.4$$

Each treated unit weighted by 1. Total untreated weight at each x should equal total treated weight.

Inverse probability weighting: Experiment

Takeaway:

- $\blacktriangleright weight = inverse probability of observed treatment condition$
- estimate by weighted means

Inverse probability weighting: Observational study

Now treatment is not randomly assigned. How do we use weighting?

Inverse probability weighting: Observational study

Now treatment is not randomly assigned. How do we use weighting?

- assume conditionally exchangeable treatment assignment
- estimate inverse probability of treatment weights

Inverse probability weighting: Observational study

Model probability of treatment

$$\hat{\mathsf{P}}(\mathsf{A}=1\midec{X})=\mathsf{logit}^{-1}\left(\hat{lpha}+\hat{ec{\gamma}}ec{X}
ight)$$

Estimate inverse probability of treatment weights

$$\hat{w}_i = egin{cases} rac{1}{\hat{\mathsf{P}}(A=1|ec{X}=ec{x_i})} & ext{if treated} \ rac{1}{\hat{\mathsf{P}}(A=0|ec{X}=ec{x_i})} & ext{if untreated} \end{cases}$$

Estimate each mean potential outcome by a weighted mean

$$\hat{\mathsf{E}}(Y^{1}) = \sum_{i:A_{i}=1} \hat{w}_{i} Y_{i} / \sum_{i:A_{i}=1} w_{i}$$
$$\hat{\mathsf{E}}(Y^{0}) = \sum_{i:A_{i}=0} \hat{w}_{i} Y_{i} / \sum_{i:A_{i}=0} w_{i}$$

Unit i was sampled with probability 0.25.

$$\mathsf{P}(S=1 \mid ec{X}=ec{x_i}) = rac{1}{4} = 0.25$$
 $w^{\mathsf{Sampling}}_i = 4$

Unit *i* was sampled with probability 0.25.

$$P(S = 1 \mid \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$
$$w_i^{\text{Sampling}} = 4$$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 | \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$

 $w_i^{Treatment} = 3$

Unit i was sampled with probability 0.25.

$$P(S = 1 \mid \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$
$$w_i^{\text{Sampling}} = 4$$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 | \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$

 $w_i^{Treatment} = 3$

How many population Y^1 values does unit *i* represent?

Unit i was sampled with probability 0.25.

$$P(S = 1 \mid \vec{X} = \vec{x_i}) = \frac{1}{4} = 0.25$$
$$w_i^{\text{Sampling}} = 4$$

Given sampling, received treatment with probability 0.33.

$$P(A = 1 | \vec{X} = \vec{x_i}, S = 1) = \frac{1}{3} = 0.33$$

 $w_i^{Treatment} = 3$

How many population Y^1 values does unit *i* represent?

$$w_i^{\text{Sampling}} \times w_i^{\text{Treatment}} = 4 \times 3 = 12$$

In math: To observe Y^1 , a unit must be sampled and treated.

$$\begin{aligned} \mathsf{P}(\mathsf{Observe} \ Y^1 \mid \vec{X}) &= \mathsf{P}(S = 1, A = 1 \mid \vec{X}) \\ &= \mathsf{P}(A = 1 \mid S = 1, \vec{X}) \mathsf{P}(S = 1 \mid \vec{X}) \end{aligned}$$

In math: To observe Y^1 , a unit must be sampled and treated.

$$\begin{aligned} \mathsf{P}(\mathsf{Observe}\ Y^1 \mid \vec{X}) &= \mathsf{P}(S = 1, A = 1 \mid \vec{X}) \\ &= \mathsf{P}(A = 1 \mid S = 1, \vec{X}) \mathsf{P}(S = 1 \mid \vec{X}) \end{aligned}$$

The inverse probability weight is thus the product of sampling and treatment weights.

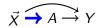
$$\frac{1}{\mathsf{P}(\mathsf{Observe}\ Y^1 \mid \vec{X})} = \underbrace{\frac{1}{\mathsf{P}(A=1 \mid S=1, \vec{X})}}_{\substack{\mathsf{inverse probability} \\ \mathsf{of treatment weight}}} \times \underbrace{\frac{1}{\mathsf{P}(A=1 \mid S=1, \vec{X})}}_{\substack{\mathsf{inverse probability} \\ \mathsf{of sampling weight}}}$$

Outcome and treatment modeling: A visual summary

Outcome modeling: Model Y^0 and Y^1 given \vec{X}

$$\vec{\chi} \rightarrow A \rightarrow Y$$

Treatment modeling: Model A given \vec{X} . Reweight.



Original population

Reweighted population

What are the advantages of each strategy? How to choose?

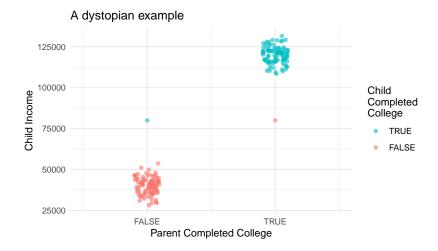
- 1. Outcome modeling
 - Model Y^1 and Y^0 given \vec{X}
 - Predict for everyone
 - Unweighted average
- 2. Treatment modeling
 - ► Model A given X
 - Create weights: how many units each case represents
 - Weighted average

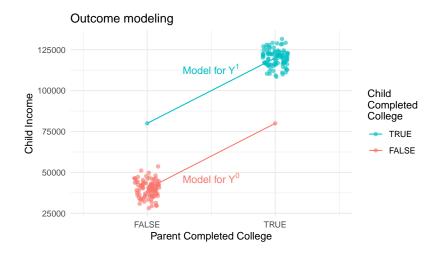
An advantage of treatment modeling

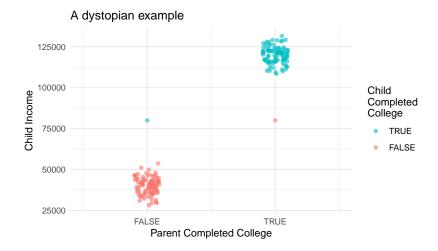
how most social scientists think about research: model the outcome

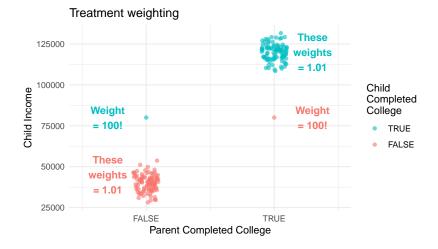
Advantages of each strategy: Treatment modeling

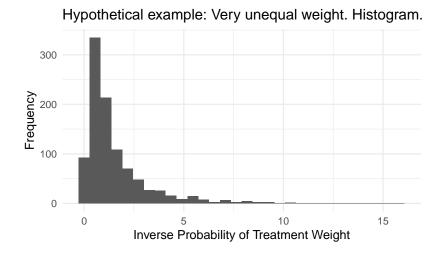
- how we already think about population sampling: reweight observed cases to learn about all cases
- transparency about influential observations

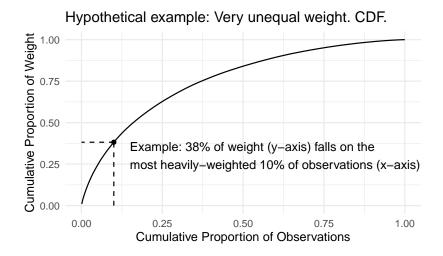




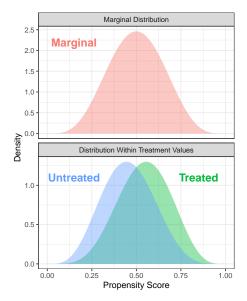




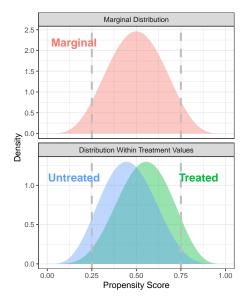




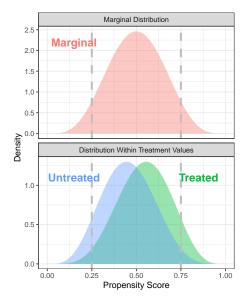
Focus on a feasible subpopulation: Region of common support



Focus on a feasible subpopulation: Region of common support

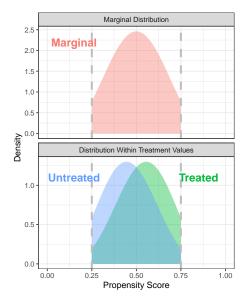


Focus on a feasible subpopulation: Region of common support



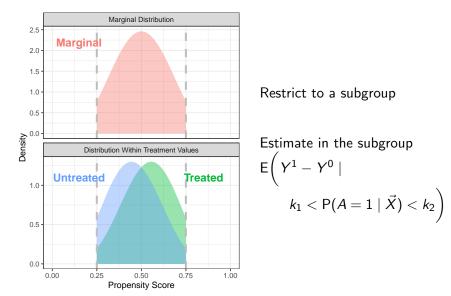
Restrict to a subgroup

Focus on a feasible subpopulation: Region of common support



Restrict to a subgroup

Focus on a feasible subpopulation: Region of common support



At the end of class, you will be able to estimate average causal effects by modeling treatment assignment probabilities.

Optional reading:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1